Curvature of the completion of the space of Sasaki potentials

Pub Date : 2020-03-19 DOI:10.5565/publmat6712309
Thomas Franzinetti
{"title":"Curvature of the completion of the space of Sasaki potentials","authors":"Thomas Franzinetti","doi":"10.5565/publmat6712309","DOIUrl":null,"url":null,"abstract":"Given a compact Sasaki manifold, we endow the space of the Sasaki potentials with an analogue of Mabuchi metric. We show that its metric completion is negatively curved in the sense of Alexandrov.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6712309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a compact Sasaki manifold, we endow the space of the Sasaki potentials with an analogue of Mabuchi metric. We show that its metric completion is negatively curved in the sense of Alexandrov.
分享
查看原文
佐佐木势空间的曲率补全
给定一个紧化的Sasaki流形,我们用类似于Mabuchi度规的形式赋予Sasaki势的空间。我们证明了它的度规补全在亚历山德罗夫意义上是负弯曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信