Amplitude recursions with an extra marked point

IF 1.2 3区 数学 Q1 MATHEMATICS
Johannes Broedel, Andr'e Kaderli
{"title":"Amplitude recursions with an extra marked point","authors":"Johannes Broedel, Andr'e Kaderli","doi":"10.4310/CNTP.2022.v16.n1.a3","DOIUrl":null,"url":null,"abstract":"The recursive calculation of Selberg integrals by Aomoto and Terasoma using the Knizhnik-Zamolodchikov equation and the Drinfeld associator makes use of an auxiliary point and facilitates the recursive evaluation of string amplitudes at genus zero: open-string N-point amplitudes can be obtained from those at N-1 points. We establish a similar formalism at genus one, which allows the recursive calculation of genus-one Selberg integrals using an extra marked point in a differential equation of Knizhnik-Zamolodchikov-Bernard type. Hereby genus-one Selberg integrals are related to genus-zero Selberg integrals. Accordingly, N-point open-string amplitudes at genus one can be obtained from (N+2)-point open-string amplitudes at tree level. The construction is related to and in accordance with various recent results in intersection theory and string theory.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2022.v16.n1.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

The recursive calculation of Selberg integrals by Aomoto and Terasoma using the Knizhnik-Zamolodchikov equation and the Drinfeld associator makes use of an auxiliary point and facilitates the recursive evaluation of string amplitudes at genus zero: open-string N-point amplitudes can be obtained from those at N-1 points. We establish a similar formalism at genus one, which allows the recursive calculation of genus-one Selberg integrals using an extra marked point in a differential equation of Knizhnik-Zamolodchikov-Bernard type. Hereby genus-one Selberg integrals are related to genus-zero Selberg integrals. Accordingly, N-point open-string amplitudes at genus one can be obtained from (N+2)-point open-string amplitudes at tree level. The construction is related to and in accordance with various recent results in intersection theory and string theory.
带额外标记点的振幅递归
Aomoto和Terasoma使用Knizhnik-Zamolodchikov方程和Drinfeld缔合器递归计算Selberg积分,利用了一个辅助点,便于递归评估亏格零处的弦振幅:开弦N点振幅可以从N-1点的振幅中获得。我们在亏格一上建立了类似的形式,它允许使用Knizhnik-Zamolodchikov-Bernard型微分方程中的额外标记点递归计算亏格一Selberg积分。因此,亏格一Selberg积分与亏格零Selberg积分有关。因此,从树级的(N+2)点开串振幅可以获得亏格一的N点开串幅度。该结构与交迭理论和弦理论中的各种最新结果有关,并符合这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信