{"title":"Flow Control in a Rectangular Open Channel using Two Impermeable Spur Dikes: A Numerical Study","authors":"Hafiz Syed Moazzum Gillani, Zain-ul-Hassan, Hafiz Rana Azeem Sarwar, Muhammad Sohail Jameel, Waqar Hasan, Ehsaan Manzoor, Imran Khan","doi":"10.53560/ppasa(60-2)808","DOIUrl":null,"url":null,"abstract":"The present study examines how adjusting vegetation patches in a rectangular open channel with two impermeable spur dikes alters the displacement of the recirculation region. The Reynolds stress turbulence model is implemented via the 3D numerical code FLUENT (ANSYS). Mean stream-wise velocity profiles were drawn at selected positions and at mid of flow depth i.e., 3.5 cm, a horizontal plane is cut through the open channel for analyzing velocity contours and streamline flow. The findings indicate that the stream-wise velocity profiles showed fluctuations in the presence of different shapes and arrangement of cylindrical patch discussed and the maximum velocity within the field of spur dike is of the order of 0.018 m/s due to the prism shape. By changing the position of the cylindrical patch, the location of the recirculation region displaces within the field of impermeable spur dike.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(60-2)808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The present study examines how adjusting vegetation patches in a rectangular open channel with two impermeable spur dikes alters the displacement of the recirculation region. The Reynolds stress turbulence model is implemented via the 3D numerical code FLUENT (ANSYS). Mean stream-wise velocity profiles were drawn at selected positions and at mid of flow depth i.e., 3.5 cm, a horizontal plane is cut through the open channel for analyzing velocity contours and streamline flow. The findings indicate that the stream-wise velocity profiles showed fluctuations in the presence of different shapes and arrangement of cylindrical patch discussed and the maximum velocity within the field of spur dike is of the order of 0.018 m/s due to the prism shape. By changing the position of the cylindrical patch, the location of the recirculation region displaces within the field of impermeable spur dike.