A new experimental methodology to assess gear scuffing initiation

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS
Nicolas Grenet – de Bechillon, T. Touret, J. Cavoret, C. Changenet, F. Ville, D. Ghribi
{"title":"A new experimental methodology to assess gear scuffing initiation","authors":"Nicolas Grenet – de Bechillon, T. Touret, J. Cavoret, C. Changenet, F. Ville, D. Ghribi","doi":"10.1080/17515831.2022.2045427","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper investigates the strong coupling between friction power losses and film thickness that prevent from clearly identifying the mechanism of scuffing through classical test procedures. As the film thickness appears of great influence on the phenomena, a new test method is presented, allowing scuffing initiation study with the film thickness as a key parameter. This new test method allows film thickness variation with minimal friction losses and bulk temperature variations. This procedure has been developed with nitrided steels and a synthetic base oil on a twin disks test rig. Even though asperity contact is considered necessary in literature for scuffing, the test result shows that it can be reached in full film lubrication, potentially through the collapse of the oil film. Different test methods allowing triggering scuffing through different parameters are identified, which shows that a variety of parameters is able to influence scuffing.","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"16 1","pages":"245 - 255"},"PeriodicalIF":1.6000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2022.2045427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This paper investigates the strong coupling between friction power losses and film thickness that prevent from clearly identifying the mechanism of scuffing through classical test procedures. As the film thickness appears of great influence on the phenomena, a new test method is presented, allowing scuffing initiation study with the film thickness as a key parameter. This new test method allows film thickness variation with minimal friction losses and bulk temperature variations. This procedure has been developed with nitrided steels and a synthetic base oil on a twin disks test rig. Even though asperity contact is considered necessary in literature for scuffing, the test result shows that it can be reached in full film lubrication, potentially through the collapse of the oil film. Different test methods allowing triggering scuffing through different parameters are identified, which shows that a variety of parameters is able to influence scuffing.
一种评估齿轮磨损起始的新实验方法
摘要本文研究了摩擦功率损失和薄膜厚度之间的强耦合,这使得无法通过经典的测试程序清楚地识别胶合机理。由于薄膜厚度对磨损现象的影响很大,提出了一种新的测试方法,允许以薄膜厚度为关键参数进行磨损引发研究。这种新的测试方法允许薄膜厚度变化,同时摩擦损失和整体温度变化最小。该程序是在双圆盘试验台上用氮化钢和合成基础油开发的。尽管文献中认为粗糙面接触是磨损所必需的,但测试结果表明,在全膜润滑下,可以通过油膜的坍塌来达到这种接触。确定了允许通过不同参数触发胶合的不同测试方法,表明各种参数能够影响胶合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信