Energy-based generative models for target-specific drug discovery.

Frontiers in molecular medicine Pub Date : 2023-06-01 eCollection Date: 2023-01-01 DOI:10.3389/fmmed.2023.1160877
Junde Li, Collin Beaudoin, Swaroop Ghosh
{"title":"Energy-based generative models for target-specific drug discovery.","authors":"Junde Li, Collin Beaudoin, Swaroop Ghosh","doi":"10.3389/fmmed.2023.1160877","DOIUrl":null,"url":null,"abstract":"<p><p>Drug targets are the main focus of drug discovery due to their key role in disease pathogenesis. Computational approaches are widely applied to drug development because of the increasing availability of biological molecular datasets. Popular generative approaches can create new drug molecules by learning the given molecule distributions. However, these approaches are mostly not for target-specific drug discovery. We developed an energy-based probabilistic model for computational target-specific drug discovery. Results show that our proposed TagMol can generate molecules with similar binding affinity scores as <i>real</i> molecules. GAT-based models showed faster and better learning relative to Graph Convolutional Network baseline models.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"3 1","pages":"1160877"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285544/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmmed.2023.1160877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drug targets are the main focus of drug discovery due to their key role in disease pathogenesis. Computational approaches are widely applied to drug development because of the increasing availability of biological molecular datasets. Popular generative approaches can create new drug molecules by learning the given molecule distributions. However, these approaches are mostly not for target-specific drug discovery. We developed an energy-based probabilistic model for computational target-specific drug discovery. Results show that our proposed TagMol can generate molecules with similar binding affinity scores as real molecules. GAT-based models showed faster and better learning relative to Graph Convolutional Network baseline models.

基于能量的靶向药物发现生成模型
药物靶点由于其在疾病发病机制中的关键作用而成为药物发现的主要焦点。由于生物分子数据集的可用性越来越高,计算方法被广泛应用于药物开发。流行的生成方法可以通过学习给定的分子分布来创建新的药物分子。然而,这些方法大多不用于靶向特异性药物的发现。我们开发了一个基于能量的概率模型,用于计算靶点特异性药物的发现。结果表明,我们提出的TagMol可以产生与真实分子具有相似结合亲和力分数的分子。相对于图卷积网络基线模型,基于GAT的模型显示出更快更好的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信