Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Analytical Integration

Hejie Lin, Tsung-Wu Lin
{"title":"Mechanical Proof of the Maxwell-Boltzmann Speed Distribution With Analytical Integration","authors":"Hejie Lin, Tsung-Wu Lin","doi":"10.5539/IJSP.V10N3P135","DOIUrl":null,"url":null,"abstract":"The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. The Maxwell-Boltzmann speed distribution of mixed particles is based on kinetic theory; however, it has never been derived from a mechanical point of view. This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles based on probability analysis and Newton’s law of motion. This paper requires the probability density function (PDF) ψ(ua; va, vb) of the speed ua of the particle with mass Ma after the collision of two particles with mass Ma in speed va and mass Mb in speed vb. The PDF ψ (ua; va, vb) in integral form has been obtained before. This paper further performs the exact integration from the integral form to obtain the PDF ψ(ua; va, vb) in an evaluated form, which is used in the following equation to get new distribution Pnew a (ua) from old distributions Pold a (va) and Pold b (vb). When Pold a (va) and Pold b (vb) are the Maxwell-Boltzmann speed distributions, the integration Pnew a (ua) obtained analytically is exactly the Maxwell-Boltzmann speed distribution. Pnew a (ua) = ∫ ∫ ψ (ua; va, vb)Pold a (va)Pold b (vb)dvadvb ∞","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":"10 1","pages":"135"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/IJSP.V10N3P135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. The Maxwell-Boltzmann speed distribution of mixed particles is based on kinetic theory; however, it has never been derived from a mechanical point of view. This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles based on probability analysis and Newton’s law of motion. This paper requires the probability density function (PDF) ψ(ua; va, vb) of the speed ua of the particle with mass Ma after the collision of two particles with mass Ma in speed va and mass Mb in speed vb. The PDF ψ (ua; va, vb) in integral form has been obtained before. This paper further performs the exact integration from the integral form to obtain the PDF ψ(ua; va, vb) in an evaluated form, which is used in the following equation to get new distribution Pnew a (ua) from old distributions Pold a (va) and Pold b (vb). When Pold a (va) and Pold b (vb) are the Maxwell-Boltzmann speed distributions, the integration Pnew a (ua) obtained analytically is exactly the Maxwell-Boltzmann speed distribution. Pnew a (ua) = ∫ ∫ ψ (ua; va, vb)Pold a (va)Pold b (vb)dvadvb ∞
Maxwell-Boltzmann速度分布的解析积分力学证明
麦克斯韦-玻尔兹曼速度分布是描述理想气体粒子速度的概率分布。麦克斯韦-玻尔兹曼速度分布对未混合粒子(一种粒子)和混合粒子(两种粒子)都有效。对于混合粒子,两种类型的粒子都遵循麦克斯韦-玻尔兹曼速度分布。同样,最可能的速度与质量的平方根成反比。混合粒子的麦克斯韦-玻尔兹曼速度分布基于动力学理论;然而,它从来没有从力学的角度推导出来。本文基于概率分析和牛顿运动定律,证明了混合粒子的麦克斯韦-玻尔兹曼速度分布和速比。本文要求概率密度函数(PDF) ψ(ua;两个质量为Ma的粒子在速度va和质量为Mb的粒子在速度vb中碰撞后,质量为Ma的粒子的速度ua的va, vb)。PDF ψ (ua;Va, vb)的积分形式已经得到。本文进一步从积分形式进行精确积分,得到PDF ψ(ua;va, vb)的求值形式,在下面的方程中使用它从旧的分布Pold a (va)和Pold b (vb)中得到新的分布Pnew a (ua)。当波尔德a (va)和波尔德b (vb)为麦克斯韦-玻尔兹曼速度分布时,解析得到的积分图a (ua)正是麦克斯韦-玻尔兹曼速度分布。计划a (ua) =∫ψ (ua;va, vb) a (va) b (vb)dvadvb∞
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信