Stem cell spheroid microneedles promote diabetic wound healing

X. Wu, Danqing Huang, Ye Xu, Guopu Chen, Yuanjin Zhao
{"title":"Stem cell spheroid microneedles promote diabetic wound healing","authors":"X. Wu, Danqing Huang, Ye Xu, Guopu Chen, Yuanjin Zhao","doi":"10.1360/tb-2023-0577","DOIUrl":null,"url":null,"abstract":"根据世界卫生组织统计, 全球范围内有超过4亿人患有 糖尿病. 由于其发病机制涉及神经病变、血管病变和免疫 功能受损等多个因素, 患者易出现皮肤感觉减退、血液供应 不足及免疫功能下降等问题. 经统计, 约15%~25%的糖尿 病患者会并发难以愈合的皮肤溃疡, 即糖尿病溃疡, 好发于 患者下肢、足部或其他容易受压的部位. 目前, 促进糖尿 病溃疡愈合的方法主要包括管理创面、控制感染、负压吸 引、应用生长因子、移植皮肤替代物和皮瓣等. 然而, 由于 其发病机制复杂, 糖尿病溃疡的复发率和致残率仍然很高, 因此更有效的治疗方法有待开发. 近年来, 干细胞治疗作为 一种前沿的治疗方法, 已受到广泛研究并应用于多个领域, 其在糖尿病溃疡中的治疗价值也得到广泛验证. 干细胞有 多种来源, 包括造血干细胞、间充质干细胞、神经干细胞、 人类胚胎干细胞、诱导多能干细胞等. 其中, 间充质干细胞 来源广泛, 具有多向分化潜能, 有助于促进创面修复和组织 再生; 此外, 间充质干细胞还能释放生长因子和细胞因子, 促 进血管生成、减轻炎症反应, 提高创面愈合能力. 因此, 间 充质干细胞在再生医学领域具有广阔应用前景. 干细胞的应用方式对疾病的治疗效果具有很大影响. 目 前干细胞的应用方式主要分为直接注射和组织工程构建两 种方式. 直接注射是指将干细胞直接注入溃疡周围或创面内, 以促进创面的修复. 组织工程则是指先将干细胞在体外培养 并构建组织工程化复合材料, 然后再将干细胞复合材料植入 创面中, 实现组织的修复和再生. 研究表明, 由于创面存在复 杂的炎性微环境, 直接注射的干细胞常常会迅速失活, 导致 细胞滞留率较低、治疗效果不佳. 为了解决这个问题, 科学 家们常常采用组织工程技术开发出多种新型的细胞支架或 细胞载体, 作为干细胞输送策略. 细胞支架和细胞载体可以 为干细胞提供生物学和物理学上的支持, 以减少干细胞在输 送过程中的损耗和失活. 值得注意的是, 具有特殊形状和结 构的细胞支架被证明可以进一步增强干细胞的递送效果. 其 中, 微针结构在透皮输送方面具有显著的优势. 微针是指针 头在数毫米或亚毫米尺寸范围内的细小针头结构, 相比于传 统的注射用针更小、更尖锐. 微针仅穿透皮肤的表皮层, 不 会进入深层组织或血管, 因此基于微针的药物输送是一种无 创且无痛的给药方式. 此外, 通过刺破角质层, 微针能直接输 送物质进入皮肤下层组织, 大大提高了药物的皮肤渗透性, 使药物可以更有效地被皮肤吸收和分布到目标区域中. 多 项研究已证实基于微针的药物递送策略在糖尿病溃疡治疗 中的具有优越性. 例如, 微针可穿透糖尿病溃疡表面具有抗 生素耐药性的细菌生物膜, 使药物有效作用于创面深层组织. 同时, 改变干细胞的生长模式以增强其治疗效果, 是当 前干细胞治疗领域的另一个研究热点. 一般来说, 在二维培 养条件下生长的干细胞与其三维的自然生长模式相差较大, 因此其功能和治疗效果受到极大的限制. 相比传统的二维培 养, 三维培养的细胞球聚体具有更接近真实组织的结构特征. 这种三维结构更符合体内细胞的自然生长环境, 能够更好地 模拟细胞之间的相互作用、信号传导以及组织发育等生理 过程. 此外, 三维细胞球聚体可以表现其特定功能和分化状 态, 例如表达特定基因、产生细胞分泌物以及发生特定生理 反应. 已有报道表明, 干细胞球聚体相比于分散细胞更易 存活, 注射于皮肤创面后能迁徙至创面内部, 帮助表皮重建 和血管新生. 因此, 培养出具有三维结构的干细胞球聚体 并靶向递送给病变组织在推动干细胞治疗中具有重要研究 价值. 然而, 传统的三维细胞球聚体培养方法(例如悬浮培养 法、凝胶下培养法)获得的干细胞球聚体往往大小不均. 过大","PeriodicalId":10230,"journal":{"name":"Chinese Science Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Science Bulletin","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1360/tb-2023-0577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

根据世界卫生组织统计, 全球范围内有超过4亿人患有 糖尿病. 由于其发病机制涉及神经病变、血管病变和免疫 功能受损等多个因素, 患者易出现皮肤感觉减退、血液供应 不足及免疫功能下降等问题. 经统计, 约15%~25%的糖尿 病患者会并发难以愈合的皮肤溃疡, 即糖尿病溃疡, 好发于 患者下肢、足部或其他容易受压的部位. 目前, 促进糖尿 病溃疡愈合的方法主要包括管理创面、控制感染、负压吸 引、应用生长因子、移植皮肤替代物和皮瓣等. 然而, 由于 其发病机制复杂, 糖尿病溃疡的复发率和致残率仍然很高, 因此更有效的治疗方法有待开发. 近年来, 干细胞治疗作为 一种前沿的治疗方法, 已受到广泛研究并应用于多个领域, 其在糖尿病溃疡中的治疗价值也得到广泛验证. 干细胞有 多种来源, 包括造血干细胞、间充质干细胞、神经干细胞、 人类胚胎干细胞、诱导多能干细胞等. 其中, 间充质干细胞 来源广泛, 具有多向分化潜能, 有助于促进创面修复和组织 再生; 此外, 间充质干细胞还能释放生长因子和细胞因子, 促 进血管生成、减轻炎症反应, 提高创面愈合能力. 因此, 间 充质干细胞在再生医学领域具有广阔应用前景. 干细胞的应用方式对疾病的治疗效果具有很大影响. 目 前干细胞的应用方式主要分为直接注射和组织工程构建两 种方式. 直接注射是指将干细胞直接注入溃疡周围或创面内, 以促进创面的修复. 组织工程则是指先将干细胞在体外培养 并构建组织工程化复合材料, 然后再将干细胞复合材料植入 创面中, 实现组织的修复和再生. 研究表明, 由于创面存在复 杂的炎性微环境, 直接注射的干细胞常常会迅速失活, 导致 细胞滞留率较低、治疗效果不佳. 为了解决这个问题, 科学 家们常常采用组织工程技术开发出多种新型的细胞支架或 细胞载体, 作为干细胞输送策略. 细胞支架和细胞载体可以 为干细胞提供生物学和物理学上的支持, 以减少干细胞在输 送过程中的损耗和失活. 值得注意的是, 具有特殊形状和结 构的细胞支架被证明可以进一步增强干细胞的递送效果. 其 中, 微针结构在透皮输送方面具有显著的优势. 微针是指针 头在数毫米或亚毫米尺寸范围内的细小针头结构, 相比于传 统的注射用针更小、更尖锐. 微针仅穿透皮肤的表皮层, 不 会进入深层组织或血管, 因此基于微针的药物输送是一种无 创且无痛的给药方式. 此外, 通过刺破角质层, 微针能直接输 送物质进入皮肤下层组织, 大大提高了药物的皮肤渗透性, 使药物可以更有效地被皮肤吸收和分布到目标区域中. 多 项研究已证实基于微针的药物递送策略在糖尿病溃疡治疗 中的具有优越性. 例如, 微针可穿透糖尿病溃疡表面具有抗 生素耐药性的细菌生物膜, 使药物有效作用于创面深层组织. 同时, 改变干细胞的生长模式以增强其治疗效果, 是当 前干细胞治疗领域的另一个研究热点. 一般来说, 在二维培 养条件下生长的干细胞与其三维的自然生长模式相差较大, 因此其功能和治疗效果受到极大的限制. 相比传统的二维培 养, 三维培养的细胞球聚体具有更接近真实组织的结构特征. 这种三维结构更符合体内细胞的自然生长环境, 能够更好地 模拟细胞之间的相互作用、信号传导以及组织发育等生理 过程. 此外, 三维细胞球聚体可以表现其特定功能和分化状 态, 例如表达特定基因、产生细胞分泌物以及发生特定生理 反应. 已有报道表明, 干细胞球聚体相比于分散细胞更易 存活, 注射于皮肤创面后能迁徙至创面内部, 帮助表皮重建 和血管新生. 因此, 培养出具有三维结构的干细胞球聚体 并靶向递送给病变组织在推动干细胞治疗中具有重要研究 价值. 然而, 传统的三维细胞球聚体培养方法(例如悬浮培养 法、凝胶下培养法)获得的干细胞球聚体往往大小不均. 过大
干细胞球形微针促进糖尿病伤口愈合
According to the World Health Organization, more than 400 million people worldwide suffer from diabetes Due to its pathogenesis involving multiple factors such as neuropathy, vascular disease, and impaired immune function, patients are prone to problems such as decreased skin sensation, insufficient blood supply, and decreased immune function According to statistics, about 15%~25% of diabetes patients will have skin ulcers that are difficult to heal, that is, diabetes ulcers, which tend to occur in patients' lower limbs, feet or other parts prone to pressure At present, the main methods to promote the healing of diabetes ulcers include wound management, infection control, negative pressure suction, application of growth factors, skin substitutes and skin flaps However, because of its complex pathogenesis, the recurrence rate and disability rate of diabetes ulcer are still high, so more effective treatment methods need to be developed In recent years, as a cutting-edge treatment method, stem cell therapy has been widely studied and applied in many fields, and its therapeutic value in diabetes ulcer has also been widely verified Stem cells come from various sources, including hematopoietic stem cells, mesenchymal stem cells, neural stem cells, human embryonic stem cells, and induced pluripotent stem cells Among them, mesenchymal stem cells have a wide range of sources and multi-directional differentiation potential, which helps promote wound repair and tissue regeneration; In addition, mesenchymal stem cells can also release growth factors and cytokines, promote angiogenesis, reduce inflammatory reactions, and improve wound healing ability Therefore, mesenchymal stem cells have broad application prospects in the field of regenerative medicine The application of stem cells has a significant impact on the therapeutic effect of diseases At present, the application methods of stem cells are mainly divided into direct injection and tissue engineering construction Direct injection refers to the direct injection of stem cells into the area around an ulcer or wound to promote wound repair Tissue engineering refers to the cultivation of stem cells in vitro and the construction of tissue engineered composite materials, followed by the implantation of stem cell composite materials into wounds to achieve tissue repair and regeneration Research has shown that due to the complex inflammatory microenvironment on the wound surface, directly injected stem cells often quickly become inactive, resulting in low cell retention rate and poor therapeutic effect To solve this problem, scientists often use tissue engineering technology to develop various new cell scaffolds or carriers as stem cell delivery strategies Cell scaffolds and cell carriers can provide biological and physical support for stem cells to reduce their loss and inactivation during transportation It is worth noting that cell scaffolds with special shapes and structures have been proven to further enhance the delivery effect of stem cells Among them, the microneedle structure has significant advantages in transdermal delivery Micro needle refers to a small needle structure with a needle size range of several millimeters or submillimeters, which is smaller and sharper than traditional injection needles Microneedles only penetrate the epidermal layer of the skin and do not enter deep tissues or blood vessels. Therefore, drug delivery based on microneedles is a non-invasive and painless delivery method In addition, by piercing the stratum corneum, microneedles can directly transport substances into the lower layer of the skin tissue, greatly improving the skin permeability of drugs, allowing them to be more effectively absorbed and distributed by the skin to the target area Several studies have confirmed the superiority of microneedle based drug delivery strategy in the treatment of diabetes ulcer For example, microneedles can penetrate the bacterial biofilm with antibiotic resistance on the surface of diabetes ulcer, so that drugs can effectively act on the deep tissue of the wound Meanwhile, changing the growth mode of stem cells to enhance their therapeutic effect is another research hotspot in the field of stem cell therapy Generally speaking, stem cells grown under two-dimensional culture conditions have significant differences from their three-dimensional natural growth patterns, which greatly limits their function and therapeutic effectiveness Compared to traditional two-dimensional culture, three-dimensional cultured cell aggregates have structural characteristics closer to real tissues This three-dimensional structure is more in line with the natural growth environment of cells in the body, and can better simulate physiological processes such as cell interactions, signal transduction, and tissue development In addition, three-dimensional cell aggregates can exhibit specific functions and differentiation states, such as expressing specific genes, producing cell secretions, and undergoing specific physiological reactions Previous reports have shown that stem cell aggregates are more likely to survive compared to dispersed cells, and can migrate to the interior of skin wounds after injection, helping with epidermal reconstruction and angiogenesis Therefore, cultivating stem cell aggregates with three-dimensional structures and targeting them for delivery to diseased tissues has important research value in promoting stem cell therapy However, stem cell spheroids obtained by traditional three-dimensional cell spheroid culture methods (such as suspension culture, gel culture) are often uneven in size Excessive size
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Science Bulletin
Chinese Science Bulletin 综合性期刊-综合性期刊
自引率
0.00%
发文量
31457
审稿时长
2.6 months
期刊介绍: Chinese Science Bulletin (CSB) was established in 1950 and is currently published three issues every month. It is indexed by Ei Compendex, ESCI (Emerging Sources Citation Index)and Chinese Science Citation Database (CSCD),etc. CSB is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and National Natural Science Foundation of China (NSFC). CSB is committed to rapidly reporting the most advanced developments in natural sciences and engineering and to serving the scientific community with valuable insights into upcoming trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信