J. Pawitan, I. Liem, T. Kispa, Evah Luviah, Fajar Mujadid, Novialdi Novialdi
{"title":"Cell pausing method for adipose tissue derived mesenchymal stem cells: comparison of Petaka G3 and ordinary flask","authors":"J. Pawitan, I. Liem, T. Kispa, Evah Luviah, Fajar Mujadid, Novialdi Novialdi","doi":"10.21037/sci.2019.12.01","DOIUrl":null,"url":null,"abstract":"Background: Various methods of cell pausing were applied to prevent proliferation of cultured cells, which either required special medium, using complicated encapsulation method, or using a special flask (Petaka G3 flask). Therefore, this study aimed to develop an easy and economical method of cell pausing method for adipose tissue derived mesenchymal stem cells (AT-MSCs) using ordinary basal medium and flask that yielded AT-MSCs, which were compliant with the requirements of International society for cell therapy (ISCT). \n Methods: We assessed cell numbers and viabilities, and percentages of CD73, CD90, CD105, and lineage negative, as well as differentiation potentials of AT-MSCs, which were cultured until 80% confluent and then placed at 4 °C or room temperature for three to seven days. We assessed those parameters between fully filled and sealed ordinary flasks compared to Petaka G3 flasks. \n Results: Cell numbers, viabilities, and percentages of CD73, CD90, CD105, and lineage negative, as well as differentiation potentials of AT-MSCs at room temperature were better than at 4 °C, and at room temperature, results of ordinary flasks were comparable to Petaka G3 flasks. \n Conclusion: We have developed an easy and economical method of cell pausing method for adipose tissue derived mesenchymal stem cells (AT- MSCs), using ordinary basal medium and flask.","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci.2019.12.01","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/sci.2019.12.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Various methods of cell pausing were applied to prevent proliferation of cultured cells, which either required special medium, using complicated encapsulation method, or using a special flask (Petaka G3 flask). Therefore, this study aimed to develop an easy and economical method of cell pausing method for adipose tissue derived mesenchymal stem cells (AT-MSCs) using ordinary basal medium and flask that yielded AT-MSCs, which were compliant with the requirements of International society for cell therapy (ISCT).
Methods: We assessed cell numbers and viabilities, and percentages of CD73, CD90, CD105, and lineage negative, as well as differentiation potentials of AT-MSCs, which were cultured until 80% confluent and then placed at 4 °C or room temperature for three to seven days. We assessed those parameters between fully filled and sealed ordinary flasks compared to Petaka G3 flasks.
Results: Cell numbers, viabilities, and percentages of CD73, CD90, CD105, and lineage negative, as well as differentiation potentials of AT-MSCs at room temperature were better than at 4 °C, and at room temperature, results of ordinary flasks were comparable to Petaka G3 flasks.
Conclusion: We have developed an easy and economical method of cell pausing method for adipose tissue derived mesenchymal stem cells (AT- MSCs), using ordinary basal medium and flask.
期刊介绍:
The Stem Cell Investigation (SCI; Stem Cell Investig; Online ISSN: 2313-0792) is a free access, peer-reviewed online journal covering basic, translational, and clinical research on all aspects of stem cells. It publishes original research articles and reviews on embryonic stem cells, induced pluripotent stem cells, adult tissue-specific stem/progenitor cells, cancer stem like cells, stem cell niche, stem cell technology, stem cell based drug discovery, and regenerative medicine. Stem Cell Investigation is indexed in PubMed/PMC since April, 2016.