{"title":"Stability analysis of strain-softening slopes based on the gravity increase method","authors":"Wenmin Yao, Chong Ma, Zhang Wang, Xiaolong Chen","doi":"10.33430/V26N1THIE-2017-0031","DOIUrl":null,"url":null,"abstract":"With traditional slope stability analysis methods, it is difficult to accurately describe the progressive failure process and dynamic variation law of slope stability. The strain-softening constitutive model was therefore used to simulate the progressive failure process of a strain-softening slope based on the gravity increase method (GIM), with the displacement interface employed to determine the sliding surface. A sensitive analysis of the characteristic parameters within the softening stage was then conducted. \n\nThe results are as follows: \nThere are similar space-time evolution laws of residual strength factor and shear strain increment, with failure starting from the slope toe and extending gradually. The sliding surface of strain-softening slopes is located between that of the slope with peak strength and the sliding surface of the slope with residual strength. The stability coefficient shows an exponential growth trend with the increase of residual cohesion and residual plastic shear strain threshold, with a positive linear correlation between the residual friction angle and stability factor. The residual friction angle is the most sensitive factor in slope stability, followed by the residualcohesion, with the residual plastic shear strain threshold being the least sensitive.","PeriodicalId":35587,"journal":{"name":"Transactions Hong Kong Institution of Engineers","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions Hong Kong Institution of Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33430/V26N1THIE-2017-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
With traditional slope stability analysis methods, it is difficult to accurately describe the progressive failure process and dynamic variation law of slope stability. The strain-softening constitutive model was therefore used to simulate the progressive failure process of a strain-softening slope based on the gravity increase method (GIM), with the displacement interface employed to determine the sliding surface. A sensitive analysis of the characteristic parameters within the softening stage was then conducted.
The results are as follows:
There are similar space-time evolution laws of residual strength factor and shear strain increment, with failure starting from the slope toe and extending gradually. The sliding surface of strain-softening slopes is located between that of the slope with peak strength and the sliding surface of the slope with residual strength. The stability coefficient shows an exponential growth trend with the increase of residual cohesion and residual plastic shear strain threshold, with a positive linear correlation between the residual friction angle and stability factor. The residual friction angle is the most sensitive factor in slope stability, followed by the residualcohesion, with the residual plastic shear strain threshold being the least sensitive.