Subdivisions and crossroads: Identifying hidden community structures in a data archive’s citation network

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Sara Lafia, Lizhou Fan, A. Thomer, Libby Hemphill
{"title":"Subdivisions and crossroads: Identifying hidden community structures in a data archive’s citation network","authors":"Sara Lafia, Lizhou Fan, A. Thomer, Libby Hemphill","doi":"10.1162/qss_a_00209","DOIUrl":null,"url":null,"abstract":"Abstract Data archives are an important source of high-quality data in many fields, making them ideal sites to study data reuse. By studying data reuse through citation networks, we are able to learn how hidden research communities—those that use the same scientific data sets—are organized. This paper analyzes the community structure of an authoritative network of data sets cited in academic publications, which have been collected by a large, social science data archive: the Interuniversity Consortium for Political and Social Research (ICPSR). Through network analysis, we identified communities of social science data sets and fields of research connected through shared data use. We argue that communities of exclusive data reuse form “subdivisions” that contain valuable disciplinary resources, while data sets at a “crossroads” broadly connect research communities. Our research reveals the hidden structure of data reuse and demonstrates how interdisciplinary research communities organize around data sets as shared scientific inputs. These findings contribute new ways of describing scientific communities to understand the impacts of research data reuse.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"694-714"},"PeriodicalIF":4.1000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_a_00209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Data archives are an important source of high-quality data in many fields, making them ideal sites to study data reuse. By studying data reuse through citation networks, we are able to learn how hidden research communities—those that use the same scientific data sets—are organized. This paper analyzes the community structure of an authoritative network of data sets cited in academic publications, which have been collected by a large, social science data archive: the Interuniversity Consortium for Political and Social Research (ICPSR). Through network analysis, we identified communities of social science data sets and fields of research connected through shared data use. We argue that communities of exclusive data reuse form “subdivisions” that contain valuable disciplinary resources, while data sets at a “crossroads” broadly connect research communities. Our research reveals the hidden structure of data reuse and demonstrates how interdisciplinary research communities organize around data sets as shared scientific inputs. These findings contribute new ways of describing scientific communities to understand the impacts of research data reuse.
细分和十字路口:识别数据档案引用网络中隐藏的社区结构
数据档案是许多领域高质量数据的重要来源,是研究数据重用的理想场所。通过研究通过引用网络的数据重用,我们能够了解隐藏的研究社区-那些使用相同科学数据集的研究社区-是如何组织的。本文分析了学术出版物中引用的权威数据集网络的社区结构,这些数据集由大型社会科学数据档案:校际政治和社会研究联盟(ICPSR)收集。通过网络分析,我们确定了通过共享数据使用连接的社会科学数据集社区和研究领域。我们认为,专有数据重用社区形成了包含有价值的学科资源的“细分”,而位于“十字路口”的数据集广泛地连接了研究社区。我们的研究揭示了数据重用的隐藏结构,并展示了跨学科研究社区如何围绕数据集作为共享的科学输入进行组织。这些发现为描述科学社区提供了新的方法,以理解研究数据重用的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信