Lipschitz Homotopy Groups of Contact 3-Manifolds

IF 0.1 Q4 MATHEMATICS
Daniel Perry
{"title":"Lipschitz Homotopy Groups of Contact 3-Manifolds","authors":"Daniel Perry","doi":"10.14321/realanalexch.47.1.1598582300","DOIUrl":null,"url":null,"abstract":"We study contact 3-manifolds using the techniques of sub-Riemannian geometry and geometric measure theory, in particular establishing properties of their Lipschitz homotopy groups. We prove a biLipschitz version of the Theorem of Darboux: a contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is locally biLipschitz equivalent to the Heisenberg group $\\mathbb{H}^n$ with its Carnot-Caratheodory metric. Then each contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is purely $k$-unrectifiable for $k>n$. We extend results of Dejarnette et al. (arXiv:1109.4641 [math.FA]) and Wenger and Young (arXiv:1210.6943 [math.GT]) by showing for any purely 2-unrectifiable sub-Riemannian manifold $(M,\\xi,g)$ that the $n$th Lipschitz homotopy group is trivial for $n\\geq2$ and that the set of oriented, horizontal knots in $(M,\\xi)$ injects into the first Lipschitz homotopy group. Thus, the first Lipschitz homotopy group of any contact 3-manifold is uncountably generated. Therefore, in the sense of Lipschitz homotopy groups, a contact 3-manifold is a $K(\\pi,1)$-space for an uncountably generated group $\\pi$. Finally, we prove that each open distributional embedding between purely 2-unrectifiable sub-Riemannian manifolds induces an injective map on the associated first Lipschitz homotopy groups. Therefore, each open subset of a contact 3-manifold determines an uncountable subgroup of the first Lipschitz homotopy group of the contact 3-manifold.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.47.1.1598582300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We study contact 3-manifolds using the techniques of sub-Riemannian geometry and geometric measure theory, in particular establishing properties of their Lipschitz homotopy groups. We prove a biLipschitz version of the Theorem of Darboux: a contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is locally biLipschitz equivalent to the Heisenberg group $\mathbb{H}^n$ with its Carnot-Caratheodory metric. Then each contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is purely $k$-unrectifiable for $k>n$. We extend results of Dejarnette et al. (arXiv:1109.4641 [math.FA]) and Wenger and Young (arXiv:1210.6943 [math.GT]) by showing for any purely 2-unrectifiable sub-Riemannian manifold $(M,\xi,g)$ that the $n$th Lipschitz homotopy group is trivial for $n\geq2$ and that the set of oriented, horizontal knots in $(M,\xi)$ injects into the first Lipschitz homotopy group. Thus, the first Lipschitz homotopy group of any contact 3-manifold is uncountably generated. Therefore, in the sense of Lipschitz homotopy groups, a contact 3-manifold is a $K(\pi,1)$-space for an uncountably generated group $\pi$. Finally, we prove that each open distributional embedding between purely 2-unrectifiable sub-Riemannian manifolds induces an injective map on the associated first Lipschitz homotopy groups. Therefore, each open subset of a contact 3-manifold determines an uncountable subgroup of the first Lipschitz homotopy group of the contact 3-manifold.
接触3-流形的Lipschitz同态群
我们利用亚黎曼几何和几何测度理论研究了接触3-流形,特别是建立了它们的Lipschitz同伦群的性质。我们证明了Darboux定理的biLipschitz版本:具有子黎曼结构的接触$(2n+1)$-流形是局部biLipschtz等价于具有Carnot-Caratheodory度量的Heisenberg群$\mathbb{H}^n$。然后,对于$k>n$,赋予子黎曼结构的每个接触$(2n+1)$流形都是纯粹的$k$不可修正的。我们扩展了Dejarnette等人(arXiv:1109.4641[math.FA])和Wenger和Young(arXiv:1210.6943[math.GT])的结果,通过证明对于任何纯粹的2-不可分解的子黎曼流形$(M,\neneneba xi,g)$,第$n$th个Lipschitz同胚群对于$n\geq2$是平凡的,并且$(M、\nenenebb xi)$中的定向水平结的集合注入到第一个Lipshitz同胚群中。因此,任何接触3-流形的第一个Lipschitz同伦群是不可数生成的。因此,在Lipschitz同伦群的意义上,接触3-流形是不可数生成群$\pi$的$K(\pi,1)$-空间。最后,我们证明了纯2-不可约子黎曼流形之间的每个开放分布嵌入在相关的第一Lipschitz同伦群上诱导了一个内射映射。因此,接触3-流形的每个开子集确定了接触3-流形第一Lipschitz同伦群的不可数子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信