Multi-agent Reinforcement Learning Method for Disassembly Sequential Task Optimization Based on Human-Robot Collaborative Disassembly in Electric Vehicle Battery Recycling

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Jinhua Xiao, Jiaxu Gao, N. Anwer, B. Eynard
{"title":"Multi-agent Reinforcement Learning Method for Disassembly Sequential Task Optimization Based on Human-Robot Collaborative Disassembly in Electric Vehicle Battery Recycling","authors":"Jinhua Xiao, Jiaxu Gao, N. Anwer, B. Eynard","doi":"10.1115/1.4062235","DOIUrl":null,"url":null,"abstract":"\n With the wide application of new electric vehicle (EV) battery in various industrial fields, it is important to establish a systematic intelligent battery recycling system that can be used to find out the resource wastes and environmental impacts for the retired EV battery. By combining the disassembly and echelon utilization of EV battery recycling in the re-manufacturing fields, human-robot collaboration (HRC) disassembly method can be used to solve many huge challenges about the efficiency and safety of retired EV battery recycling. In order to find out the common problems in the human-robot collaboration disassembly process of EV battery recycling, a dynamic disassembly process optimization method based on Multi-Agent Reinforcement Learning (MARL) algorithm is proposed. Furthermore, it is necessary to disassemble the EV battery disassembly task trajectory based on human-robot collaboration disassembly task in 2D planar, which can be used to acquire the optimal disassembly paths in the same disassembly planar combining the Q-learning algorithm. The disassembly task sequence can be completed through standard trajectory matching. Finally the feasibility of the method is verified by disassembly operations for a specific battery module case.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062235","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 4

Abstract

With the wide application of new electric vehicle (EV) battery in various industrial fields, it is important to establish a systematic intelligent battery recycling system that can be used to find out the resource wastes and environmental impacts for the retired EV battery. By combining the disassembly and echelon utilization of EV battery recycling in the re-manufacturing fields, human-robot collaboration (HRC) disassembly method can be used to solve many huge challenges about the efficiency and safety of retired EV battery recycling. In order to find out the common problems in the human-robot collaboration disassembly process of EV battery recycling, a dynamic disassembly process optimization method based on Multi-Agent Reinforcement Learning (MARL) algorithm is proposed. Furthermore, it is necessary to disassemble the EV battery disassembly task trajectory based on human-robot collaboration disassembly task in 2D planar, which can be used to acquire the optimal disassembly paths in the same disassembly planar combining the Q-learning algorithm. The disassembly task sequence can be completed through standard trajectory matching. Finally the feasibility of the method is verified by disassembly operations for a specific battery module case.
基于人机协同拆卸的电动汽车电池回收中拆卸顺序任务优化的多智能体强化学习方法
随着新型电动汽车电池在各个工业领域的广泛应用,建立一个系统的智能电池回收系统来找出退役电动汽车电池的资源浪费和环境影响具有重要意义。通过将电动汽车电池回收在再制造领域的拆解和梯次利用相结合,人机协作拆解方法可以解决退役电动汽车电池循环利用效率和安全性方面的许多巨大挑战。为了找出电动汽车电池回收过程中人机协同拆卸过程中的常见问题,提出了一种基于多智能体强化学习算法的动态拆卸过程优化方法。此外,有必要在二维平面中基于人机协同拆卸任务对电动汽车电池拆卸任务轨迹进行拆卸,结合Q学习算法可以获得同一拆卸平面中的最优拆卸路径。拆卸任务序列可以通过标准轨迹匹配来完成。最后通过对具体电池模块壳体的拆卸操作验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信