Tsunami evacuation simulation considering road width in Aoshima district

IF 0.8 Q4 ROBOTICS
Keita Nabeyama, Shotaro Usuzaki, Kentaro Aburada, Hisaaki Yamaba, Tetsuro Katayama, Naonobu Okazaki
{"title":"Tsunami evacuation simulation considering road width in Aoshima district","authors":"Keita Nabeyama,&nbsp;Shotaro Usuzaki,&nbsp;Kentaro Aburada,&nbsp;Hisaaki Yamaba,&nbsp;Tetsuro Katayama,&nbsp;Naonobu Okazaki","doi":"10.1007/s10015-023-00888-6","DOIUrl":null,"url":null,"abstract":"<div><p>Japan is one of the countries in the world where natural disasters occur most frequently. Typhoons, earthquakes, tsunamis, volcanic eruptions, and many other natural disasters occur in Japan every year, and the risks are immeasurable. Japan is especially prone to earthquakes because of its location on the North American Plate, Eurasian Plate, Pacific Plate, and Philippine Sea Plate. Preparation for a Nankai Trough earthquake is one of the most important issues. A Nankai trough earthquake is predicted to occur with a probability of 70–80% within 30 years. Accordingly, a tsunami of more than 10 ms is expected to hit a wide area along the Pacific coast from the Kanto region to the Kyushu region, and the impact is expected to be significant. When a tsunami warning is issued, an evacuation support system that provides information on evacuation sites and routes enables faster and safer evacuation actions. In a previous study conducted in our laboratory, we proposed an evacuation support system using Low-Power Wide-Area communications and conducted a simulation to find ways to improve the evacuation support system. However, the simulation was insufficient in that it did not consider delays in evacuation completion time due to road congestion caused by limited road width, which can be expected in an actual disaster. In our current research, as an improvement to make the simulation more realistic for further developing our evacuation support system, we propose a simulation that considers road width. We examined how adoption of this simulation methodology would affect the simulation results by comparing simulations that did and did not consider road width. As a result, the proposed method showed a lower percentage of completed evacuations than the previous simulation, especially for children and the elderly. The reason for this result is that when evacuations begin simultaneously, crowding occurs as people all rush to evacuation centers. This congestion on the roads near evacuation centers prevents people from completing their evacuations. Such a phenomenon is expected to occur not only in simulations but also on actual roads. For this reason, our proposed simulation method that considers road width is a more realistic simulation. Since evacuations by car in the event of a disaster also occur, a future issue is to simulate car congestion as well. Furthermore, simulating what would happen if a disaster made a road impassable is also important.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"28 4","pages":"779 - 788"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00888-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Japan is one of the countries in the world where natural disasters occur most frequently. Typhoons, earthquakes, tsunamis, volcanic eruptions, and many other natural disasters occur in Japan every year, and the risks are immeasurable. Japan is especially prone to earthquakes because of its location on the North American Plate, Eurasian Plate, Pacific Plate, and Philippine Sea Plate. Preparation for a Nankai Trough earthquake is one of the most important issues. A Nankai trough earthquake is predicted to occur with a probability of 70–80% within 30 years. Accordingly, a tsunami of more than 10 ms is expected to hit a wide area along the Pacific coast from the Kanto region to the Kyushu region, and the impact is expected to be significant. When a tsunami warning is issued, an evacuation support system that provides information on evacuation sites and routes enables faster and safer evacuation actions. In a previous study conducted in our laboratory, we proposed an evacuation support system using Low-Power Wide-Area communications and conducted a simulation to find ways to improve the evacuation support system. However, the simulation was insufficient in that it did not consider delays in evacuation completion time due to road congestion caused by limited road width, which can be expected in an actual disaster. In our current research, as an improvement to make the simulation more realistic for further developing our evacuation support system, we propose a simulation that considers road width. We examined how adoption of this simulation methodology would affect the simulation results by comparing simulations that did and did not consider road width. As a result, the proposed method showed a lower percentage of completed evacuations than the previous simulation, especially for children and the elderly. The reason for this result is that when evacuations begin simultaneously, crowding occurs as people all rush to evacuation centers. This congestion on the roads near evacuation centers prevents people from completing their evacuations. Such a phenomenon is expected to occur not only in simulations but also on actual roads. For this reason, our proposed simulation method that considers road width is a more realistic simulation. Since evacuations by car in the event of a disaster also occur, a future issue is to simulate car congestion as well. Furthermore, simulating what would happen if a disaster made a road impassable is also important.

考虑广岛地区道路宽度的海啸疏散模拟
日本是世界上自然灾害发生最频繁的国家之一。日本每年都会发生台风、地震、海啸、火山爆发等许多自然灾害,其风险是不可估量的。由于地处北美板块、欧亚板块、太平洋板块和菲律宾海板块,日本特别容易发生地震。对南开海槽地震的准备是最重要的问题之一。预测30年内南开槽地震发生的概率为70-80%。因此,预计从关东地区到九州地区的太平洋沿岸将发生10毫秒以上的海啸,其影响将十分巨大。当海啸警报发出时,提供疏散地点和路线信息的疏散支持系统可以使疏散行动更快、更安全。在我们实验室之前的研究中,我们提出了一种基于低功率广域通信的疏散支持系统,并进行了仿真,以寻找改进疏散支持系统的方法。但是,模拟的不足之处是没有考虑到在实际灾害中可以预料到的由于道路宽度有限而导致的道路拥堵导致疏散完成时间的延迟。在我们目前的研究中,我们提出了考虑道路宽度的模拟,以使模拟更加真实,从而进一步开发我们的疏散支持系统。我们通过比较考虑和不考虑道路宽度的模拟,研究了采用这种模拟方法将如何影响模拟结果。因此,所提出的方法显示完成疏散的百分比低于之前的模拟,特别是对于儿童和老人。造成这种结果的原因是,当疏散同时开始时,当人们都涌向疏散中心时,就会出现拥挤。疏散中心附近道路的拥堵使人们无法完成疏散。预计这种现象不仅在模拟中出现,而且在实际道路上也会出现。因此,我们提出的考虑道路宽度的仿真方法是一种更真实的仿真方法。由于在发生灾难时也会发生汽车疏散,因此未来的问题是模拟汽车拥堵。此外,模拟灾难导致道路无法通行的情况也很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信