Mass spring model for non-uniformed deformable linear object toward dexterous manipulation

IF 0.8 Q4 ROBOTICS
Kenta Tabata, Hiroaki Seki, Tokuo Tsuji, Tatsuhiro Hiramitsu
{"title":"Mass spring model for non-uniformed deformable linear object toward dexterous manipulation","authors":"Kenta Tabata,&nbsp;Hiroaki Seki,&nbsp;Tokuo Tsuji,&nbsp;Tatsuhiro Hiramitsu","doi":"10.1007/s10015-023-00889-5","DOIUrl":null,"url":null,"abstract":"<div><p>Manipulation for deformable object is difficult in robotics. The deformation of the deformable object is not the same, despite the same manipulation. This is due to the difference in the object characteristics, which depend on knitting, material, etc. This leads to difficulties in the motion planning. We propose a method that estimates the string model by comparing the real string movement and simulated string movement in a certain manipulation repeatedly by trial and error. This method realizes several manipulations using unknown strings. But feasible range was limited to uniform strings. In this paper, we proposed string model for representing various kind of string. This model assumed that mass distribution is not uniform and bending properties is different depending on extraction and contraction. Where this model was applied to several non-uniform string and uniform string, we confirmed that the proposed model can express the actual string movement.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"28 4","pages":"812 - 822"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00889-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulation for deformable object is difficult in robotics. The deformation of the deformable object is not the same, despite the same manipulation. This is due to the difference in the object characteristics, which depend on knitting, material, etc. This leads to difficulties in the motion planning. We propose a method that estimates the string model by comparing the real string movement and simulated string movement in a certain manipulation repeatedly by trial and error. This method realizes several manipulations using unknown strings. But feasible range was limited to uniform strings. In this paper, we proposed string model for representing various kind of string. This model assumed that mass distribution is not uniform and bending properties is different depending on extraction and contraction. Where this model was applied to several non-uniform string and uniform string, we confirmed that the proposed model can express the actual string movement.

面向灵巧操作的非均匀变形线性物体的质量弹簧模型
在机器人技术中,对可变形物体的操纵是一个难点。可变形物体的变形是不一样的,尽管同样的操作。这是由于物体特性的差异,这取决于编织,材料等。这就给运动规划带来了困难。提出了一种通过反复试错的方法,通过比较某一操作下真实的弦运动和模拟的弦运动来估计弦模型的方法。这个方法使用未知字符串实现了几个操作。但可行范围仅限于统一的字符串。本文提出了字符串模型来表示各种类型的字符串。该模型假定质量分布不均匀,且拉伸和收缩不同,弯曲性能也不同。将该模型应用于几种非均匀弦和均匀弦,我们证实了所提出的模型可以表达实际的弦运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信