{"title":"AMESim simulation and energy control of hydraulic control system for direct drive electro-hydraulic servo die forging hammer","authors":"Geqiang Li, Yinting Ding, Yong Feng, Yuesong Li","doi":"10.1504/ijhm.2019.10023791","DOIUrl":null,"url":null,"abstract":"The application of direct drive electro-hydraulic servo system in die forging hammer is studied, and a new type of direct drive electro-hydraulic servo control die forging hammer is proposed. The impact energy of forging hammer is modelled by analytic method, and the relationship between impact energy E and motor speed n is simulated and analysed by Simulink software. The AC permanent magnet synchronous servo motor model and the hydraulic system simulation model are established on AMESim, and the system performance curve, the pump output flow curve and the servo motor speed curve are obtained. A wavelet neural network PID control algorithm is proposed to realise closed-loop control of pressure and speed of direct drive electro-hydraulic servo die forging hammer. A combined simulation model of AMESim and Simulink is built. The hardware-in-the-loop simulation experiment of the control system is designed. The simulation and experimental results verify the correctness of the scheme.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhm.2019.10023791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4
Abstract
The application of direct drive electro-hydraulic servo system in die forging hammer is studied, and a new type of direct drive electro-hydraulic servo control die forging hammer is proposed. The impact energy of forging hammer is modelled by analytic method, and the relationship between impact energy E and motor speed n is simulated and analysed by Simulink software. The AC permanent magnet synchronous servo motor model and the hydraulic system simulation model are established on AMESim, and the system performance curve, the pump output flow curve and the servo motor speed curve are obtained. A wavelet neural network PID control algorithm is proposed to realise closed-loop control of pressure and speed of direct drive electro-hydraulic servo die forging hammer. A combined simulation model of AMESim and Simulink is built. The hardware-in-the-loop simulation experiment of the control system is designed. The simulation and experimental results verify the correctness of the scheme.