An Efficient Threshold Dynamics Method for Topology Optimization for Fluids

IF 1.2 Q2 MATHEMATICS, APPLIED
Huangxin Chen, Haitao Leng, Dong Wang, Xiaoping Wang
{"title":"An Efficient Threshold Dynamics Method for Topology Optimization for Fluids","authors":"Huangxin Chen, Haitao Leng, Dong Wang, Xiaoping Wang","doi":"10.4208/csiam-am.so-2021-0007","DOIUrl":null,"url":null,"abstract":"We propose an efficient threshold dynamics method for topology optimization for fluids modeled with the Stokes equation. The proposed algorithm is based on minimization of an objective energy function that consists of the dissipation power in the fluid and the perimeter approximated by nonlocal energy, subject to a fluid volume constraint and the incompressibility condition. We show that the minimization problem can be solved with an iterative scheme in which the Stokes equation is approximated by a Brinkman equation. The indicator functions of the fluid-solid regions are then updated according to simple convolutions followed by a thresholding step. We demonstrate mathematically that the iterative algorithm has the total energy decaying property. The proposed algorithm is simple and easy to implement. A simple adaptive time strategy is also used to accelerate the convergence of the iteration. Extensive numerical experiments in both two and three dimensions show that the proposed iteration algorithm converges in much fewer iterations and is more efficient than many existing methods. In addition, the numerical results show that the algorithm is very robust and insensitive to the initial guess and the parameters in the model.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

We propose an efficient threshold dynamics method for topology optimization for fluids modeled with the Stokes equation. The proposed algorithm is based on minimization of an objective energy function that consists of the dissipation power in the fluid and the perimeter approximated by nonlocal energy, subject to a fluid volume constraint and the incompressibility condition. We show that the minimization problem can be solved with an iterative scheme in which the Stokes equation is approximated by a Brinkman equation. The indicator functions of the fluid-solid regions are then updated according to simple convolutions followed by a thresholding step. We demonstrate mathematically that the iterative algorithm has the total energy decaying property. The proposed algorithm is simple and easy to implement. A simple adaptive time strategy is also used to accelerate the convergence of the iteration. Extensive numerical experiments in both two and three dimensions show that the proposed iteration algorithm converges in much fewer iterations and is more efficient than many existing methods. In addition, the numerical results show that the algorithm is very robust and insensitive to the initial guess and the parameters in the model.
流体拓扑优化的有效阈值动力学方法
我们提出了一种有效的阈值动力学方法,用于用斯托克斯方程建模的流体的拓扑优化。所提出的算法基于目标能量函数的最小化,该函数由流体中的耗散功率和由非局部能量近似的周长组成,受流体体积约束和不可压缩性条件的约束。我们证明了最小化问题可以用迭代格式来解决,其中Stokes方程由Brinkman方程近似。然后根据简单的卷积更新流体-固体区域的指示函数,然后进行阈值化步骤。我们从数学上证明了迭代算法具有总能量衰减特性。该算法简单易行。一个简单的自适应时间策略也被用来加速迭代的收敛。在二维和三维的大量数值实验表明,所提出的迭代算法在更少的迭代中收敛,并且比许多现有方法更有效。此外,数值结果表明,该算法具有很强的鲁棒性,对初始猜测和模型中的参数不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信