Chandra Prakash, Anurag Barthwal, S. Avikal, Gyanendra Kumar Singh
{"title":"FSAS: An IoT-Based Security System for Crop Field Storage","authors":"Chandra Prakash, Anurag Barthwal, S. Avikal, Gyanendra Kumar Singh","doi":"10.1155/2023/2367167","DOIUrl":null,"url":null,"abstract":"Internet of Things abstracts the ability to remotely associate and observe things or objects over the Internet. When it comes to agriculture, this idea has been incorporated to make agriculture-related tasks smart, secure, and automated. Agriculture is vital for economic growth and also for the survival of humans. Farmers living in rural areas of India face a common problem of the theft of equipment like induction motors from small storage houses meant for storing commodities in crop fields. In this study, we present a remote security management framework for monitoring the crop field storage house, known as the farm security alert system (FSAS). FSAS is a small, energy efficient, low cost, and accurate security management system that uses microcontroller-based passive infrared (PIR) sensor and global system for mobile communication (GSM) module to generate an alert to the farm owner if there is an intrusion event at the crop field store. The microcontroller board utilized in the proposed model is the Arduino Uno, and PIR motion sensor is used to recognize the intruder. In addition, FSAS also can be used for monitoring of induction motor by utilizing a similar arrangement of sensors. The sensor signal is transmitted to the cloud whenever the intruder is within the sensing range of the sensor node. Naive Bayes’ prediction model is used to identify the level of encroachment as no (green), mild (yellow), or high (red) threat. The status and the alarms can be received by the farm owners, either on their smartphones as application alerts or as a short message/phone call, at any distance, and independent of whether their cell phones are connected to the Internet.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/2367167","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Internet of Things abstracts the ability to remotely associate and observe things or objects over the Internet. When it comes to agriculture, this idea has been incorporated to make agriculture-related tasks smart, secure, and automated. Agriculture is vital for economic growth and also for the survival of humans. Farmers living in rural areas of India face a common problem of the theft of equipment like induction motors from small storage houses meant for storing commodities in crop fields. In this study, we present a remote security management framework for monitoring the crop field storage house, known as the farm security alert system (FSAS). FSAS is a small, energy efficient, low cost, and accurate security management system that uses microcontroller-based passive infrared (PIR) sensor and global system for mobile communication (GSM) module to generate an alert to the farm owner if there is an intrusion event at the crop field store. The microcontroller board utilized in the proposed model is the Arduino Uno, and PIR motion sensor is used to recognize the intruder. In addition, FSAS also can be used for monitoring of induction motor by utilizing a similar arrangement of sensors. The sensor signal is transmitted to the cloud whenever the intruder is within the sensing range of the sensor node. Naive Bayes’ prediction model is used to identify the level of encroachment as no (green), mild (yellow), or high (red) threat. The status and the alarms can be received by the farm owners, either on their smartphones as application alerts or as a short message/phone call, at any distance, and independent of whether their cell phones are connected to the Internet.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.