Qua-Objects, (Non-)Derivative Properties and the Consistency of Hylomorphism

IF 0.2 0 PHILOSOPHY
Marta Campdelacreu, Sergi Oms
{"title":"Qua-Objects, (Non-)Derivative Properties and the Consistency of Hylomorphism","authors":"Marta Campdelacreu, Sergi Oms","doi":"10.1515/mp-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract Imagine a sculptor who molds a lump of clay to create a statue. Hylomorphism claims that the statue and the lump of clay are two different colocated objects that have different forms, even though they share the same matter. Recently, there has been some discussion on the requirements of consistency for hylomorphist theories. In this paper, we focus on an argument presented by Maegan Fairchild, according to which a minimal version of hylomorphism is inconsistent. We argue that the argument is unsound or, at best, it just points to a well-known problem for hylmorphist theories. Additionally, we explore some general consequences of this fact.","PeriodicalId":43147,"journal":{"name":"Metaphysica-International Journal for Ontology & Metaphysics","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaphysica-International Journal for Ontology & Metaphysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mp-2022-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Imagine a sculptor who molds a lump of clay to create a statue. Hylomorphism claims that the statue and the lump of clay are two different colocated objects that have different forms, even though they share the same matter. Recently, there has been some discussion on the requirements of consistency for hylomorphist theories. In this paper, we focus on an argument presented by Maegan Fairchild, according to which a minimal version of hylomorphism is inconsistent. We argue that the argument is unsound or, at best, it just points to a well-known problem for hylmorphist theories. Additionally, we explore some general consequences of this fact.
拟对象、(非)导数性质与Hylomorphism的一致性
摘要想象一下,一个雕塑家用一块粘土来塑造一座雕像。Hylomorphism声称雕像和粘土块是两个不同的并置物体,具有不同的形式,尽管它们共享相同的物质。近来,关于亚纯理论的一致性要求有一些讨论。在本文中,我们关注Maegan-Fairchild提出的一个论点,根据该论点,亚纯性的极小版本是不一致的。我们认为,这个论点是不合理的,或者,充其量,它只是指出了hymorphist理论的一个众所周知的问题。此外,我们还探讨了这一事实的一些普遍后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
50.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信