FORECASTING REALIZED VOLATILITY DYNAMICALLY BASED ON ADJUSTED DYNAMIC MODEL AVERAGING (AMDA) APPROACH: EVIDENCE FROM CHINA’S STOCK MARKET

IF 2 0 ECONOMICS
Ping-Hong Yuan
{"title":"FORECASTING REALIZED VOLATILITY DYNAMICALLY BASED ON ADJUSTED DYNAMIC MODEL AVERAGING (AMDA) APPROACH: EVIDENCE FROM CHINA’S STOCK MARKET","authors":"Ping-Hong Yuan","doi":"10.11648/J.IJAFRM.20190402.11","DOIUrl":null,"url":null,"abstract":"In this study, we forecast the realized volatility of the CSI 300 index using the heterogeneous autoregressive model for realized volatility (HAR-RV) and its various extensions. Our models take into account the time-varying property of the models’ parameters and the volatility of realized volatility. The adjusted dynamic model averaging (ADMA) approach, is used to combine the forecasts of the individual models. Our empirical results suggest that ADMA can generate more accurate forecasts than DMA method and alternative strategies. Models that use time-varying parameters have greater forecasting accuracy than models that use the constant coefficients.","PeriodicalId":43570,"journal":{"name":"Annals of Financial Economics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Financial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJAFRM.20190402.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we forecast the realized volatility of the CSI 300 index using the heterogeneous autoregressive model for realized volatility (HAR-RV) and its various extensions. Our models take into account the time-varying property of the models’ parameters and the volatility of realized volatility. The adjusted dynamic model averaging (ADMA) approach, is used to combine the forecasts of the individual models. Our empirical results suggest that ADMA can generate more accurate forecasts than DMA method and alternative strategies. Models that use time-varying parameters have greater forecasting accuracy than models that use the constant coefficients.
基于调整动态模型平均法的波动率动态预测&来自中国股市的证据
在本研究中,我们使用实现波动率的异质自回归模型(HAR-RV)及其各种扩展来预测沪深300指数的实现波动率。我们的模型考虑了模型参数的时变特性和已实现波动率的波动性。调整后的动态模型平均(ADMA)方法用于组合各个模型的预测。我们的实证结果表明,ADMA可以比DMA方法和替代策略产生更准确的预测。使用时变参数的模型比使用常系数的模型具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
55.00%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信