A. Janin, N. Chamot‐Rooke, M. Delescluse, M. Fournier, J. Olive, A. Rabaute, P. Huchon, J. Dyment, C. Vigny, Mathieu Rodriguez
{"title":"Tectonic Evolution of a Sedimented Oceanic Transform Fault: The Owen Transform Fault, Indian Ocean","authors":"A. Janin, N. Chamot‐Rooke, M. Delescluse, M. Fournier, J. Olive, A. Rabaute, P. Huchon, J. Dyment, C. Vigny, Mathieu Rodriguez","doi":"10.1029/2023TC007747","DOIUrl":null,"url":null,"abstract":"The Owen transform fault (OTF) connecting the Sheba and the Carlsberg spreading ridges in the Indian Ocean currently forms the active plate boundary between India and Somalia plates. This 330‐km‐long transform fault is by far the longest transform fault along the India‐Somalia plate boundary and its valley is buried under the thick distal turbidites of the Indus Fan with total thickness ranging from 1,000 to >5,000 m. A new set of seismic reflection and multibeam bathymetric data reveals remarkable transpressive structures along its entire length recorded as folds in the sedimentary cover, eruption of mud ridges at the seafloor, thrusts in the young oceanic lithosphere. Based on a new regional time‐calibration of the seismic reflectors, we show that sediments in the transform valley (post 8.6 Ma) recorded a period of tectonic quiescence until the onset of a transpressive event around 1.5–2.4 Ma that we relate to a minor change in India‐Somalia kinematics not captured by magnetic anomalies. This tectonic regime is still active based on compressive earthquakes and deformation of the most recent sediments. Transpression resulted in the formation of a proto‐median ridge and the coeval propagation of the tip of the Carlsberg Ridge into the Somalian plate. These features are typically encountered at many other transform faults but rarely captured in their very early stage.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023TC007747","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Owen transform fault (OTF) connecting the Sheba and the Carlsberg spreading ridges in the Indian Ocean currently forms the active plate boundary between India and Somalia plates. This 330‐km‐long transform fault is by far the longest transform fault along the India‐Somalia plate boundary and its valley is buried under the thick distal turbidites of the Indus Fan with total thickness ranging from 1,000 to >5,000 m. A new set of seismic reflection and multibeam bathymetric data reveals remarkable transpressive structures along its entire length recorded as folds in the sedimentary cover, eruption of mud ridges at the seafloor, thrusts in the young oceanic lithosphere. Based on a new regional time‐calibration of the seismic reflectors, we show that sediments in the transform valley (post 8.6 Ma) recorded a period of tectonic quiescence until the onset of a transpressive event around 1.5–2.4 Ma that we relate to a minor change in India‐Somalia kinematics not captured by magnetic anomalies. This tectonic regime is still active based on compressive earthquakes and deformation of the most recent sediments. Transpression resulted in the formation of a proto‐median ridge and the coeval propagation of the tip of the Carlsberg Ridge into the Somalian plate. These features are typically encountered at many other transform faults but rarely captured in their very early stage.
期刊介绍:
Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.