On the Arens Homomorphism

IF 0.6 4区 数学 Q3 MATHEMATICS
B. Turan, M. Aslantaş
{"title":"On the Arens Homomorphism","authors":"B. Turan,&nbsp;M. Aslantaş","doi":"10.1134/S0016266322020083","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(E\\)</span> be a unital <span>\\(f\\)</span>-module over an <span>\\(f\\)</span>-algebra <span>\\(A\\)</span>. With the help of Arens extension theory, a <span>\\((A^{\\sim})_{n}^{\\sim}\\)</span> module structure on <span>\\(E^{\\sim}\\)</span> can be defined. The paper deals mainly with properties of the Arens homomorphism <span>\\(\\eta\\colon(A^{\\sim})_{n}^{\\sim}\\to \\operatorname {Orth}(E^{\\sim})\\)</span>, which is defined by the <span>\\((A^{\\sim})_{n}^{\\sim}\\)</span> module structure on <span>\\(E^{\\sim}\\)</span>. Necessary and sufficient conditions for an <span>\\(A\\)</span> submodule of <span>\\(E\\)</span> to be an order ideal are obtained. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"56 2","pages":"144 - 151"},"PeriodicalIF":0.6000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322020083","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(E\) be a unital \(f\)-module over an \(f\)-algebra \(A\). With the help of Arens extension theory, a \((A^{\sim})_{n}^{\sim}\) module structure on \(E^{\sim}\) can be defined. The paper deals mainly with properties of the Arens homomorphism \(\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname {Orth}(E^{\sim})\), which is defined by the \((A^{\sim})_{n}^{\sim}\) module structure on \(E^{\sim}\). Necessary and sufficient conditions for an \(A\) submodule of \(E\) to be an order ideal are obtained.

关于阿伦斯同态
设\(E\)是\(f\) -代数\(A\)上的一元\(f\) -模块。借助Arens可拓理论,可以在\(E^{\sim}\)上定义一个\((A^{\sim})_{n}^{\sim}\)模块结构。本文主要讨论了在\(E^{\sim}\)上用\((A^{\sim})_{n}^{\sim}\)模块结构定义的Arens同态\(\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname {Orth}(E^{\sim})\)的性质。给出了\(E\)的\(A\)子模块是阶理想的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信