On the Arens Homomorphism

Pub Date : 2022-10-10 DOI:10.1134/S0016266322020083
B. Turan, M. Aslantaş
{"title":"On the Arens Homomorphism","authors":"B. Turan,&nbsp;M. Aslantaş","doi":"10.1134/S0016266322020083","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(E\\)</span> be a unital <span>\\(f\\)</span>-module over an <span>\\(f\\)</span>-algebra <span>\\(A\\)</span>. With the help of Arens extension theory, a <span>\\((A^{\\sim})_{n}^{\\sim}\\)</span> module structure on <span>\\(E^{\\sim}\\)</span> can be defined. The paper deals mainly with properties of the Arens homomorphism <span>\\(\\eta\\colon(A^{\\sim})_{n}^{\\sim}\\to \\operatorname {Orth}(E^{\\sim})\\)</span>, which is defined by the <span>\\((A^{\\sim})_{n}^{\\sim}\\)</span> module structure on <span>\\(E^{\\sim}\\)</span>. Necessary and sufficient conditions for an <span>\\(A\\)</span> submodule of <span>\\(E\\)</span> to be an order ideal are obtained. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322020083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(E\) be a unital \(f\)-module over an \(f\)-algebra \(A\). With the help of Arens extension theory, a \((A^{\sim})_{n}^{\sim}\) module structure on \(E^{\sim}\) can be defined. The paper deals mainly with properties of the Arens homomorphism \(\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname {Orth}(E^{\sim})\), which is defined by the \((A^{\sim})_{n}^{\sim}\) module structure on \(E^{\sim}\). Necessary and sufficient conditions for an \(A\) submodule of \(E\) to be an order ideal are obtained.

分享
查看原文
关于阿伦斯同态
设\(E\)是\(f\) -代数\(A\)上的一元\(f\) -模块。借助Arens可拓理论,可以在\(E^{\sim}\)上定义一个\((A^{\sim})_{n}^{\sim}\)模块结构。本文主要讨论了在\(E^{\sim}\)上用\((A^{\sim})_{n}^{\sim}\)模块结构定义的Arens同态\(\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname {Orth}(E^{\sim})\)的性质。给出了\(E\)的\(A\)子模块是阶理想的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信