A classification of left-invariant pseudo-Riemannian metrics on some nilpotent Lie groups*

Pub Date : 2021-12-17 DOI:10.32917/h2021054
Yuji Kondo
{"title":"A classification of left-invariant pseudo-Riemannian metrics on some nilpotent Lie groups*","authors":"Yuji Kondo","doi":"10.32917/h2021054","DOIUrl":null,"url":null,"abstract":"It is known that a connected and simply-connected Lie group admits only one left-invariant Riemannian metric up to scaling and isometry if and only if it is isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the direct product of the three dimensional Heisenberg group and the Euclidean space of dimension n − 3. In this paper, we give a classification of left-invariant pseudo-Riemannian metrics of an arbitrary signature for the third Lie groups with n ≥ 4 up to scaling and automorphisms. This completes the classifications of left-invariant pseudo-Riemannian metrics for the above three Lie groups up to scaling and automorphisms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2021054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that a connected and simply-connected Lie group admits only one left-invariant Riemannian metric up to scaling and isometry if and only if it is isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the direct product of the three dimensional Heisenberg group and the Euclidean space of dimension n − 3. In this paper, we give a classification of left-invariant pseudo-Riemannian metrics of an arbitrary signature for the third Lie groups with n ≥ 4 up to scaling and automorphisms. This completes the classifications of left-invariant pseudo-Riemannian metrics for the above three Lie groups up to scaling and automorphisms.
分享
查看原文
幂零李群*上左不变伪黎曼度量的分类
已知连通和单连通的李群只允许一个左不变的黎曼度量达到缩放和等距当且仅当它同构于欧几里得空间、实双曲空间的李群,或三维海森堡群与维数为n-3的欧几里得空间的直积。本文给出了n≥4的第三李群的任意签名的左不变伪黎曼度量的一个分类和自同构。这就完成了上述三个李群的左不变伪黎曼度量的分类,直到标度和自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信