José Ricardo Bagateli, Carlos André Bahry, R. N. D. Silva, I. Carvalho, G. G. Conte, F. A. Villela, G. I. Gadotti, G. Meneghello
{"title":"Estimates of heterosis and combining ability of soybean diallel crossings","authors":"José Ricardo Bagateli, Carlos André Bahry, R. N. D. Silva, I. Carvalho, G. G. Conte, F. A. Villela, G. I. Gadotti, G. Meneghello","doi":"10.21475/poj.13.01.20.p2038","DOIUrl":null,"url":null,"abstract":"This study aimed to estimate the general and specific combining ability of partial soybean diallel crossings. The parents were divided in two groups contrasting for the characteristics of mass of thousand seeds, maturity group, flowers’ color, lodging and growth aspect. The scheme of partial diallel followed the Griffing model, where it were included the parents and the F1 generation. There was predominance of additive genic effects for the characteristics number of seeds per pods, number of seeds per plant and plants height. For number of pods per plant, seeds per plant and mass of hundred seeds the dominance effects were expressed by the superiority of specific combining ability in the determination of these characters. The parents G3 and G7 were the ones that contributed the most to the increase in yield in function of general combining ability for the characters number of pods per plant, seeds per plant, plant yield and mass of hundred seeds. The hybrids from the crossings between G3 x G5 and G3 x G4 are more promising for the characteristics related to yield, since they present elevated heterosis effect and high specific combining ability associated to increase general combining ability presented by the parent G3.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"1 1","pages":"7-14"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/poj.13.01.20.p2038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
This study aimed to estimate the general and specific combining ability of partial soybean diallel crossings. The parents were divided in two groups contrasting for the characteristics of mass of thousand seeds, maturity group, flowers’ color, lodging and growth aspect. The scheme of partial diallel followed the Griffing model, where it were included the parents and the F1 generation. There was predominance of additive genic effects for the characteristics number of seeds per pods, number of seeds per plant and plants height. For number of pods per plant, seeds per plant and mass of hundred seeds the dominance effects were expressed by the superiority of specific combining ability in the determination of these characters. The parents G3 and G7 were the ones that contributed the most to the increase in yield in function of general combining ability for the characters number of pods per plant, seeds per plant, plant yield and mass of hundred seeds. The hybrids from the crossings between G3 x G5 and G3 x G4 are more promising for the characteristics related to yield, since they present elevated heterosis effect and high specific combining ability associated to increase general combining ability presented by the parent G3.
期刊介绍:
Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including:
Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.