Empirical likelihood inference and goodness-of-fit test for logistic regression model under two-phase case-control sampling

IF 0.7 Q3 STATISTICS & PROBABILITY
Z. Sheng, Yukun Liu, J. Qin
{"title":"Empirical likelihood inference and goodness-of-fit test for logistic regression model under two-phase case-control sampling","authors":"Z. Sheng, Yukun Liu, J. Qin","doi":"10.1080/24754269.2021.1946373","DOIUrl":null,"url":null,"abstract":"ABSTRACT Due to cost-effectiveness and high efficiency, two-phase case-control sampling has been widely used in epidemiology studies. We develop a semi-parametric empirical likelihood approach to two-phase case-control data under the logistic regression model. We show that the maximum empirical likelihood estimator has an asymptotically normal distribution, and the empirical likelihood ratio follows an asymptotically central chi-square distribution. We find that the maximum empirical likelihood estimator is equal to Breslow and Holubkov (1997)'s maximum likelihood estimator. Even so, the limiting distribution of the likelihood ratio, likelihood-ratio-based interval, and test are all new. Furthermore, we construct new Kolmogorov–Smirnov type goodness-of-fit tests to test the validation of the underlying logistic regression model. Our simulation results and a real application show that the likelihood-ratio-based interval and test have certain merits over the Wald-type counterparts and that the proposed goodness-of-fit test is valid.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"265 - 276"},"PeriodicalIF":0.7000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1946373","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1946373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Due to cost-effectiveness and high efficiency, two-phase case-control sampling has been widely used in epidemiology studies. We develop a semi-parametric empirical likelihood approach to two-phase case-control data under the logistic regression model. We show that the maximum empirical likelihood estimator has an asymptotically normal distribution, and the empirical likelihood ratio follows an asymptotically central chi-square distribution. We find that the maximum empirical likelihood estimator is equal to Breslow and Holubkov (1997)'s maximum likelihood estimator. Even so, the limiting distribution of the likelihood ratio, likelihood-ratio-based interval, and test are all new. Furthermore, we construct new Kolmogorov–Smirnov type goodness-of-fit tests to test the validation of the underlying logistic regression model. Our simulation results and a real application show that the likelihood-ratio-based interval and test have certain merits over the Wald-type counterparts and that the proposed goodness-of-fit test is valid.
两阶段病例对照抽样下logistic回归模型的经验似然推断和拟合优度检验
摘要两阶段病例对照抽样由于具有成本效益和高效性,在流行病学研究中得到了广泛应用。我们在逻辑回归模型下对两阶段病例对照数据开发了一种半参数经验似然方法。我们证明了最大经验似然估计具有渐近正态分布,并且经验似然比遵循渐近中心卡方分布。我们发现最大经验似然估计量等于Breslow和Holubkov(1997)的最大似然估计量。即便如此,似然比的极限分布、基于似然比的区间和测试都是新的。此外,我们构建了新的Kolmogorov–Smirnov型拟合优度检验,以检验底层逻辑回归模型的有效性。我们的仿真结果和实际应用表明,基于似然比的区间和检验与Wald型区间和检验相比具有一定的优点,并且所提出的拟合优度检验是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信