{"title":"FIXED POINT THEOREMS FOR THE MODIFIED SIMULATION FUNCTION AND APPLICATIONS TO FRACTIONAL ECONOMICS SYSTEMS","authors":"H. Nashine, R. Ibrahim, Y. Cho, J. Kim","doi":"10.22771/NFAA.2021.26.01.10","DOIUrl":null,"url":null,"abstract":"In this paper, first, we prove some common fixed point theorems for the generalized contraction condition under newly defined modified simulation function which generalize and include many results in the literature. Second, we give two numerical examples with graphical representations for verifying the proposed results. Third, we discuss and study a set of common fixed point theorems for two pairs (finite families) of self-mappings. Fi- nally, we give some applications of our results in discrete and functional fractional economic systems.","PeriodicalId":37534,"journal":{"name":"Nonlinear Functional Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Functional Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22771/NFAA.2021.26.01.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, first, we prove some common fixed point theorems for the generalized contraction condition under newly defined modified simulation function which generalize and include many results in the literature. Second, we give two numerical examples with graphical representations for verifying the proposed results. Third, we discuss and study a set of common fixed point theorems for two pairs (finite families) of self-mappings. Fi- nally, we give some applications of our results in discrete and functional fractional economic systems.
期刊介绍:
The international mathematical journal NFAA will publish carefully selected original research papers on nonlinear functional analysis and applications, that is, ordinary differential equations, all kinds of partial differential equations, functional differential equations, integrodifferential equations, control theory, approximation theory, optimal control, optimization theory, numerical analysis, variational inequality, asymptotic behavior, fixed point theory, dynamic systems and complementarity problems. Papers for publication will be communicated and recommended by the members of the Editorial Board.