Update: Reference Correlation for the Viscosity of Ethane [J. Phys. Chem. Ref. Data 44, 043101 (2015)]

IF 4.4 2区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
S. Herrmann, R. Hellmann, E. Vogel
{"title":"Update: Reference Correlation for the Viscosity of Ethane [J. Phys. Chem. Ref. Data 44, 043101 (2015)]","authors":"S. Herrmann, R. Hellmann, E. Vogel","doi":"10.1063/1.5037239","DOIUrl":null,"url":null,"abstract":"An update of the reference correlation for the viscosity of ethane [E. Vogel et al., J. Phys. Chem. Ref. Data 44, 043101 (2015)] was developed because recently a new zero-density viscosity correlation based on theoretically calculated values of the dilute-gas viscosity became available. The original zero-density contribution was replaced, and the generation of the complete viscosity correlation was repeated using the residual viscosity concept and a state-of-the-art linear optimization algorithm. A term representing the critical enhancement was again included, so that a total of 18 coefficients resulted for the final formulation. The viscosity in the limit of zero density is now described with an expanded uncertainty of 0.3% (coverage factor k = 2) in the temperature range 250 ≤ T/K ≤ 700 and of 1.0% at temperatures 90 ≤ T/K < 250 and 700 < T/K ≤ 1200. The updated complete viscosity correlation is valid in the fluid region from the melting line to 675 K and 100 MPa. The uncertainty of the correlation amounts to 1.5% at temperatures 290 ≤ T/K ≤ 430 and at pressures up to 30 MPa based on very reliable data. The uncertainty of the correlated values is increased to 4.0% in the range 95 ≤ T/K ≤ 500 at pressures up to 55 MPa, for which further primary data exist. In the region where no experimental data are available, but the reference equation of state of Bucker and Wagner is valid, the uncertainty is estimated to be 6.0%. The uncertainty in the near-critical region rises with decreasing temperature up to 3.0% when taking into account the available data.An update of the reference correlation for the viscosity of ethane [E. Vogel et al., J. Phys. Chem. Ref. Data 44, 043101 (2015)] was developed because recently a new zero-density viscosity correlation based on theoretically calculated values of the dilute-gas viscosity became available. The original zero-density contribution was replaced, and the generation of the complete viscosity correlation was repeated using the residual viscosity concept and a state-of-the-art linear optimization algorithm. A term representing the critical enhancement was again included, so that a total of 18 coefficients resulted for the final formulation. The viscosity in the limit of zero density is now described with an expanded uncertainty of 0.3% (coverage factor k = 2) in the temperature range 250 ≤ T/K ≤ 700 and of 1.0% at temperatures 90 ≤ T/K < 250 and 700 < T/K ≤ 1200. The updated complete viscosity correlation is valid in the fluid region from the melting line to 675 K and 100 MPa. The uncertainty of the correlation amou...","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5037239","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical and Chemical Reference Data","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/1.5037239","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

An update of the reference correlation for the viscosity of ethane [E. Vogel et al., J. Phys. Chem. Ref. Data 44, 043101 (2015)] was developed because recently a new zero-density viscosity correlation based on theoretically calculated values of the dilute-gas viscosity became available. The original zero-density contribution was replaced, and the generation of the complete viscosity correlation was repeated using the residual viscosity concept and a state-of-the-art linear optimization algorithm. A term representing the critical enhancement was again included, so that a total of 18 coefficients resulted for the final formulation. The viscosity in the limit of zero density is now described with an expanded uncertainty of 0.3% (coverage factor k = 2) in the temperature range 250 ≤ T/K ≤ 700 and of 1.0% at temperatures 90 ≤ T/K < 250 and 700 < T/K ≤ 1200. The updated complete viscosity correlation is valid in the fluid region from the melting line to 675 K and 100 MPa. The uncertainty of the correlation amounts to 1.5% at temperatures 290 ≤ T/K ≤ 430 and at pressures up to 30 MPa based on very reliable data. The uncertainty of the correlated values is increased to 4.0% in the range 95 ≤ T/K ≤ 500 at pressures up to 55 MPa, for which further primary data exist. In the region where no experimental data are available, but the reference equation of state of Bucker and Wagner is valid, the uncertainty is estimated to be 6.0%. The uncertainty in the near-critical region rises with decreasing temperature up to 3.0% when taking into account the available data.An update of the reference correlation for the viscosity of ethane [E. Vogel et al., J. Phys. Chem. Ref. Data 44, 043101 (2015)] was developed because recently a new zero-density viscosity correlation based on theoretically calculated values of the dilute-gas viscosity became available. The original zero-density contribution was replaced, and the generation of the complete viscosity correlation was repeated using the residual viscosity concept and a state-of-the-art linear optimization algorithm. A term representing the critical enhancement was again included, so that a total of 18 coefficients resulted for the final formulation. The viscosity in the limit of zero density is now described with an expanded uncertainty of 0.3% (coverage factor k = 2) in the temperature range 250 ≤ T/K ≤ 700 and of 1.0% at temperatures 90 ≤ T/K < 250 and 700 < T/K ≤ 1200. The updated complete viscosity correlation is valid in the fluid region from the melting line to 675 K and 100 MPa. The uncertainty of the correlation amou...
更新:乙烷粘度的参考相关性[J.Phys.Chem.Ref.Data 44043101(2015)]
乙烷粘度的参考相关性的更新[E.Vogel等人,J.Phys.Chem.Ref.Data44043101(2015)]是因为最近基于稀释气体粘度的理论计算值的新的零密度粘度相关性变得可用。原始的零密度贡献被替换,并且使用残余粘度概念和最先进的线性优化算法重复生成完全粘度相关性。再次包含了代表临界增强的术语,因此最终配方总共产生了18个系数。现在描述了零密度极限下的粘度,在250≤T/k≤700的温度范围内,其扩展不确定度为0.3%(覆盖系数k=2),在90≤T/k<250和700<T/k≤1200的温度下,其扩展的不确定度是1.0%。更新的完全粘度相关性在从熔化线到675K和100MPa的流体区域中是有效的。基于非常可靠的数据,在温度290≤T/K≤430和压力高达30MPa时,相关性的不确定性达到1.5%。在压力高达55MPa的条件下,相关值的不确定度在95≤T/K≤500的范围内增加到4.0%,存在更多的原始数据。在没有实验数据,但Bucker和Wagner的参考状态方程有效的区域,不确定度估计为6.0%。考虑到可用数据,近临界区域的不确定度随着温度的下降而上升,最高可达3.0%。乙烷粘度的参考相关性的更新[E.Vogel等人,J.Phys.Chem.Ref.Data44043101(2015)]是因为最近基于稀释气体粘度的理论计算值的新的零密度粘度相关性变得可用。原始的零密度贡献被替换,并且使用残余粘度概念和最先进的线性优化算法重复生成完全粘度相关性。再次包含了代表临界增强的术语,因此最终配方总共产生了18个系数。现在描述了零密度极限下的粘度,在250≤T/k≤700的温度范围内,其扩展不确定度为0.3%(覆盖系数k=2),在90≤T/k<250和700<T/k≤1200的温度下,其扩展的不确定度是1.0%。更新的完全粘度相关性在从熔化线到675K和100MPa的流体区域中是有效的。关联度的不确定度。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
11.60%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Journal of Physical and Chemical Reference Data (JPCRD) is published by AIP Publishing for the U.S. Department of Commerce National Institute of Standards and Technology (NIST). The journal provides critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation, preferably with uncertainty analysis. Critical reviews may also be included if they document a reference database, review the data situation in a field, review reference-quality measurement techniques, or review data evaluation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信