Avaliação do Uso Integrado de Imagens de Nanossatélites e Classificadores baseados em Aprendizado de Máquina para Estudos da Dinâmica Hidrológica na Região da Nhecolândia (Pantanal)
Mariana Dias Ramos, Eder Renato Merino, Célia Regina Montes, A. J. Melfi
{"title":"Avaliação do Uso Integrado de Imagens de Nanossatélites e Classificadores baseados em Aprendizado de Máquina para Estudos da Dinâmica Hidrológica na Região da Nhecolândia (Pantanal)","authors":"Mariana Dias Ramos, Eder Renato Merino, Célia Regina Montes, A. J. Melfi","doi":"10.14393/rbcv75n0a-67656","DOIUrl":null,"url":null,"abstract":"A região da Baixa Nhecolândia é uma das paisagens mais icônicas da Bacia do Pantanal. Sua morfologia única é composta por mais de 10.000 lagoas com águas salino-alcalinas e água doce que coexistem em uma área aproximada de 12.000 km². Essa região está sujeita a alagamentos sazonais que atuam no escoamento superficial, porém, pouco se conhece sobre sua dinâmica de inundação. Avanços recentes na área do geoprocessamento têm ajudado a ampliar nosso conhecimento sobre ambientes lacustres. Este trabalho teve como objetivo avaliar o desempenho de dois classificadores supervisionados baseados em aprendizado de máquina (Support Vector Machine e Random Forest), para a caracterização da dinâmica hidrológica da região da Nhecolândia. Os classificadores foram aplicados em imagens de nanossatélites (PlanetScope) por meio da plataforma de computação em nuvem Google Earth Engine. Os resultados evidenciaram o desempenho satisfatório e semelhante dos dois classificadores.","PeriodicalId":36183,"journal":{"name":"Revista Brasileira de Cartografia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Cartografia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14393/rbcv75n0a-67656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
A região da Baixa Nhecolândia é uma das paisagens mais icônicas da Bacia do Pantanal. Sua morfologia única é composta por mais de 10.000 lagoas com águas salino-alcalinas e água doce que coexistem em uma área aproximada de 12.000 km². Essa região está sujeita a alagamentos sazonais que atuam no escoamento superficial, porém, pouco se conhece sobre sua dinâmica de inundação. Avanços recentes na área do geoprocessamento têm ajudado a ampliar nosso conhecimento sobre ambientes lacustres. Este trabalho teve como objetivo avaliar o desempenho de dois classificadores supervisionados baseados em aprendizado de máquina (Support Vector Machine e Random Forest), para a caracterização da dinâmica hidrológica da região da Nhecolândia. Os classificadores foram aplicados em imagens de nanossatélites (PlanetScope) por meio da plataforma de computação em nuvem Google Earth Engine. Os resultados evidenciaram o desempenho satisfatório e semelhante dos dois classificadores.