When a (dual-)Baer module is a direct sum of (co-)prime modules

IF 0.4 Q4 MATHEMATICS
¨¨—˚¨¯ ¸¯˚—˛˝˝¯, ¯¨¯˚¨¯ ¨˙´¯¨, N. Ghaedan
{"title":"When a (dual-)Baer module is a direct sum of (co-)prime modules","authors":"¨¨—˚¨¯ ¸¯˚—˛˝˝¯, ¯¨¯˚¨¯ ¨˙´¯¨, N. Ghaedan","doi":"10.33048/semi.2021.18.057","DOIUrl":null,"url":null,"abstract":"Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module M is a direct sum of prime modules, then every direct summand of M is retractable. The converse is true whenever the triangulating dimension of $M$ is finite (e.g. if the uniform dimension of M is finite). Dually, if every direct summand of a dual-Baer module M is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or M is a max-module. Among other applications, we show that if R is a commutative hereditary Noetherian ring then a finitely generated R-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.","PeriodicalId":45858,"journal":{"name":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/semi.2021.18.057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module M is a direct sum of prime modules, then every direct summand of M is retractable. The converse is true whenever the triangulating dimension of $M$ is finite (e.g. if the uniform dimension of M is finite). Dually, if every direct summand of a dual-Baer module M is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or M is a max-module. Among other applications, we show that if R is a commutative hereditary Noetherian ring then a finitely generated R-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.
当(对偶-)Baer模是(协-)素模的直和时
自2004年以来,许多作者认为贝尔模是贝尔环的推广。如果$M_R$上的自同态核的每个交集都是$M_R$M的直和数,则模$M_R$2称为Baer。已知交换Baer环是约化的。我们证明了如果Baer模M是素数模的直和,那么M的每个直和都是可伸缩的。只要$M$的三角化维数是有限的(例如,如果M的一致维数是有限),则反之亦然。对偶上,如果对偶Baer模M的每个直和都是可共伸缩的,则它是共素模的直和,并且当和是有限的或M是最大模时,反之亦然。在其他应用中,我们证明了如果R是交换的遗传诺瑟环,那么有限生成的R模是Baer,当它是射影或半单的。此外,在一个等价于完全对偶环的环Morita上,所有的对偶Baer模都是半单的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
25.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信