On full and nearly full operators in complex Banach spaces

IF 0.4 Q4 MATHEMATICS
S. Al-Sa'di, Wilson Pacheco
{"title":"On full and nearly full operators in complex Banach spaces","authors":"S. Al-Sa'di, Wilson Pacheco","doi":"10.5269/bspm.62340","DOIUrl":null,"url":null,"abstract":"A bounded linear operator $T$ on a complex Banach space $\\mathcal{X}$ is said to be full if $\\overline{T\\mathcal{M}}=\\mathcal{M}$ for every invariant subspace $\\mathcal{M}$ of $\\mathcal{X}$. It is nearly full if $\\overline{T\\mathcal{M}}$ has finite codimension in $\\mathcal{M}$. In this paper, we focus our attention to characterize full and nearly full operators in complex Banach spaces, showing that some valid results in complex Hilbert spaces can be generalized to this context.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A bounded linear operator $T$ on a complex Banach space $\mathcal{X}$ is said to be full if $\overline{T\mathcal{M}}=\mathcal{M}$ for every invariant subspace $\mathcal{M}$ of $\mathcal{X}$. It is nearly full if $\overline{T\mathcal{M}}$ has finite codimension in $\mathcal{M}$. In this paper, we focus our attention to characterize full and nearly full operators in complex Banach spaces, showing that some valid results in complex Hilbert spaces can be generalized to this context.
复Banach空间中的满算子和近满算子
复巴拿赫空间$\mathcal{X}$上的有界线性算子$T$是满的,如果$\overline{T\mathcal{M}}=\mathcal{M}$对于$\mathcal{X}$的每一不变子空间$\mathcal{M}$都是满的。如果$\overline{T\mathcal{M}}$在$\mathcal{M}$中具有有限的余维,则它是近满的。本文研究了复Banach空间中的满算子和近满算子的特征,证明了复Hilbert空间中的一些有效结果可以推广到这一情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信