Nguyen Viet Hung, Trinh Dac Chien, Nam Pham Ngoc, T. Truong
{"title":"Flexible HTTP-based Video Adaptive Streaming for good QoE during sudden bandwidth drops","authors":"Nguyen Viet Hung, Trinh Dac Chien, Nam Pham Ngoc, T. Truong","doi":"10.4108/eetinis.v10i2.2994","DOIUrl":null,"url":null,"abstract":"We have observed a boom in video streaming over the Internet, especially during the Covid-19 pandemic, that could exceed the network resource availability. In addition to upgrading the network infrastructure, finding a way to smartly adapt the streaming system to the network and users’ conditions to satisfy clients’ perceptions is exceptionally critical, too. This paper proposes a new QoE-aware adaptive streaming scheme over HTTP - ABRA - to make flexible adaptations based on the network and the client’s current status. Besides, we propose a technique that can keep the buffer at an average high for more than 10s. We were limiting the phenomena of rebuffering due to unexpected and unpredictable bandwidth changes. The algorithm keeps the quality of subsequent versions’ quality constant even when the average bitrate decreases, increasing the QoE. Experimental results show that our method can improve QoE from 7.86% to 20.41% compared to state-of-the-art methods. ABRA can provide better performance in terms of QoE score in all buffer conditions compared to the existing solutions while maintaining a minimum secured buffer level for the worst case.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v10i2.2994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
We have observed a boom in video streaming over the Internet, especially during the Covid-19 pandemic, that could exceed the network resource availability. In addition to upgrading the network infrastructure, finding a way to smartly adapt the streaming system to the network and users’ conditions to satisfy clients’ perceptions is exceptionally critical, too. This paper proposes a new QoE-aware adaptive streaming scheme over HTTP - ABRA - to make flexible adaptations based on the network and the client’s current status. Besides, we propose a technique that can keep the buffer at an average high for more than 10s. We were limiting the phenomena of rebuffering due to unexpected and unpredictable bandwidth changes. The algorithm keeps the quality of subsequent versions’ quality constant even when the average bitrate decreases, increasing the QoE. Experimental results show that our method can improve QoE from 7.86% to 20.41% compared to state-of-the-art methods. ABRA can provide better performance in terms of QoE score in all buffer conditions compared to the existing solutions while maintaining a minimum secured buffer level for the worst case.