A new numerical fractional differentiation formula to approximate the Caputo-Fabrizio fractional derivative: error analysis and stability

IF 1.1 Q2 MATHEMATICS, APPLIED
Leila Moghadam Dizaj Herik, M. Javidi, M. Shafiee
{"title":"A new numerical fractional differentiation formula to approximate the Caputo-Fabrizio fractional derivative: error analysis and stability","authors":"Leila Moghadam Dizaj Herik, M. Javidi, M. Shafiee","doi":"10.22034/CMDE.2020.37595.1664","DOIUrl":null,"url":null,"abstract":"In the present work, first of all, a new numerical fractional differentiation formula (called the CF2 formula) to approximate the Caputo-Fabrizio fractional derivative of order $alpha,$ $(0<alpha<1)$ is developed. It is established by means of the quadratic interpolation approximation using three points $ (t_{j-2},y(t_{j-2}))$,  $(t_{j-1},y(t_{j-1})) $ and $ (t_{j},y(t_{j})) $ on each interval $[t_{j-1},t_{j}]$ for $ ( j geq 2 )$, while the linear interpolation approximation is applied on the first interval $[t_{0},t_{1}]$. As a result, the new formula can be formally viewed as a modification of the classical CF1 formula, which is obtained by the piecewise linear approximation for $y(t)$. Both the computational efficiency and numerical accuracy of the new formula is superior to that of the CF1 formula. The coefficients and truncation errors of this formula are discussed in detail. {Two test example show} the numerical accuracy of the CF2 formula. The CF1 formula demonstrates that the new CF2 is much more effective and more accurate than the CF1 when solving fractional differential equations. Detailed stability analysis and region stability of the CF2 are also carefully investigated.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.37595.1664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, first of all, a new numerical fractional differentiation formula (called the CF2 formula) to approximate the Caputo-Fabrizio fractional derivative of order $alpha,$ $(0
一个新的近似Caputo-Fabrizio分数导数的数值分数微分公式:误差分析和稳定性
本文首先提出了一个新的数值分数阶微分公式(称为CF2公式)来近似阶$ α,$ $(0< α <1)$的Caputo-Fabrizio分数阶导数。对于$(j geq 2)$,在每个区间$[t_{j-1},t_{j}]$上使用$(t_{j}) $, $(t_{j}) $, $(t_{j}) $和$(t_{j},y(t_{j})) $三个点进行二次插值逼近,而在第一个区间$[t_{0},t_{1}]$上应用线性插值逼近。因此,新公式可以形式上看作是对经典CF1公式的修正,经典CF1公式是通过y(t)的分段线性近似得到的。新公式的计算效率和数值精度均优于CF1公式。详细讨论了该公式的系数和截断误差。{两个测试实例显示}CF2公式的数值精度。CF1公式表明,在求解分数阶微分方程时,新的CF2比CF1更有效、更精确。对CF2进行了详细的稳定性分析和区域稳定性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信