The ring of modular forms for the even unimodular lattice of signature (2,18)

IF 0.5 4区 数学 Q3 MATHEMATICS
Atsuhira Nagano, K. Ueda
{"title":"The ring of modular forms for the even unimodular lattice of signature (2,18)","authors":"Atsuhira Nagano, K. Ueda","doi":"10.32917/h2021012","DOIUrl":null,"url":null,"abstract":"We show that the ring of modular forms with characters for the even unimodular lattice of signature (2,18) is obtained from the invariant ring of $\\mathrm{Sym}(\\mathrm{Sym}^8(V) \\oplus \\mathrm{Sym}^{12}(V))$ with respect to the action of $\\mathrm{SL}(V)$ by adding a Borcherds product of weight 132 with one relation of weight 264, where $V$ is a 2-dimensional $\\mathbb{C}$-vector space. The proof is based on the study of the moduli space of elliptic K3 surfaces with a section.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2021012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We show that the ring of modular forms with characters for the even unimodular lattice of signature (2,18) is obtained from the invariant ring of $\mathrm{Sym}(\mathrm{Sym}^8(V) \oplus \mathrm{Sym}^{12}(V))$ with respect to the action of $\mathrm{SL}(V)$ by adding a Borcherds product of weight 132 with one relation of weight 264, where $V$ is a 2-dimensional $\mathbb{C}$-vector space. The proof is based on the study of the moduli space of elliptic K3 surfaces with a section.
签名(2,18)的偶单模格的模形式环
我们证明了签名(2,18)的偶单模格的带字符模形式环是由$\ mathm {Sym}(\ mathm {Sym}^8(V) \ 0 + \ mathm {Sym}^{12}(V))$的不变环($\ mathm {SL}(V)$的作用加一个权值132的Borcherds积与权值264的关系得到的,其中$V$是一个二维$\mathbb{C}$-向量空间。该证明是基于对带截面的椭圆型K3曲面的模空间的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信