On the $\lambda$-invariant of Selmer Groups Arising from Certain Quadratic Twists of Gross Curves

IF 0.4 4区 数学 Q4 MATHEMATICS
Jianing Li
{"title":"On the $\\lambda$-invariant of Selmer Groups Arising from Certain Quadratic Twists of Gross Curves","authors":"Jianing Li","doi":"10.3836/tjm/1502179379","DOIUrl":null,"url":null,"abstract":"Let q be a prime with q ≡ 7 mod 8, and let K = Q( √ −q). Then 2 splits in K, and we write p for either of the primes K above 2. Let K∞ be the unique Z2-extension of K unramified outside p with n-th layer Kn. For certain quadratic and biquadratic extensions F/K, we prove a simple exact formula for the λ-invariant of the Galois group of the maximal abelian 2-extension unramified outside p of the field F∞ = FK∞. Equivalently, our result determines the exact Z2-corank of certain Selmer groups over F∞ of a large family of quadratic twists of the higher dimensional abelian variety with complex multiplication, which is the restriction of scalars to K of the Gross curve with complex multiplication defined over the Hilbert class field of K. We also discuss computations of the associated Selmer groups over Kn in the case when the λ-invariant is equal to 1.","PeriodicalId":48976,"journal":{"name":"Tokyo Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tokyo Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179379","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let q be a prime with q ≡ 7 mod 8, and let K = Q( √ −q). Then 2 splits in K, and we write p for either of the primes K above 2. Let K∞ be the unique Z2-extension of K unramified outside p with n-th layer Kn. For certain quadratic and biquadratic extensions F/K, we prove a simple exact formula for the λ-invariant of the Galois group of the maximal abelian 2-extension unramified outside p of the field F∞ = FK∞. Equivalently, our result determines the exact Z2-corank of certain Selmer groups over F∞ of a large family of quadratic twists of the higher dimensional abelian variety with complex multiplication, which is the restriction of scalars to K of the Gross curve with complex multiplication defined over the Hilbert class field of K. We also discuss computations of the associated Selmer groups over Kn in the case when the λ-invariant is equal to 1.
由某些粗糙曲线的二次扭转引起的Selmer群的$\ λ $-不变量
设q为素数,q≠7 mod 8,设K=q(√−q)。然后2在K中分裂,我们为2以上的素数K中的任何一个写p。设K∞是在p外具有第n层Kn的K的唯一Z2扩张。对于某些二次和双二次扩张F/K,我们证明了域F∞=FK∞的p外最大阿贝尔2-扩张的Galois群的λ-不变量的一个简单精确公式。等价地,我们的结果确定了具有复乘法的高维阿贝尔变种的一大族二次扭曲的F∞上某些Selmer群的精确Z2 corank,这是在K的Hilbert类域上定义的具有复乘法Gross曲线的标量对K的限制。我们还讨论了当λ-不变量等于1时,Kn上的相关Selmer群的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
16.70%
发文量
27
审稿时长
>12 weeks
期刊介绍: The Tokyo Journal of Mathematics was founded in 1978 with the financial support of six institutions in the Tokyo area: Gakushuin University, Keio University, Sophia University, Tokyo Metropolitan University, Tsuda College, and Waseda University. In 2000 Chuo University and Meiji University, in 2005 Tokai University, and in 2013 Tokyo University of Science, joined as supporting institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信