The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation

IF 2.1 2区 数学 Q1 MATHEMATICS
Yinbin Deng, Qihan He, Yiqing Pan, X. Zhong
{"title":"The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation","authors":"Yinbin Deng, Qihan He, Yiqing Pan, X. Zhong","doi":"10.1515/ans-2022-0049","DOIUrl":null,"url":null,"abstract":"Abstract We consider the existence and nonexistence of the positive solution for the following Brézis-Nirenberg problem with logarithmic perturbation: − Δ u = ∣ u ∣ 2 ∗ − 2 u + λ u + μ u log u 2 x ∈ Ω , u = 0 x ∈ ∂ Ω , \\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{ll}-\\Delta u={| u| }^{{2}^{\\ast }-2}u+\\lambda u+\\mu u\\log {u}^{2}\\hspace{1.0em}& x\\in \\Omega ,\\\\ u=0\\hspace{1.0em}& x\\in \\partial \\Omega ,\\end{array}\\right. where Ω ⊂ R N \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded open domain, λ , μ ∈ R \\lambda ,\\mu \\in {\\mathbb{R}} , N ≥ 3 N\\ge 3 and 2 ∗ ≔ 2 N N − 2 {2}^{\\ast }:= \\frac{2N}{N-2} is the critical Sobolev exponent for the embedding H 0 1 ( Ω ) ↪ L 2 ∗ ( Ω ) {H}_{0}^{1}\\left(\\Omega )\\hspace{0.33em}\\hookrightarrow \\hspace{0.33em}{L}^{{2}^{\\ast }}\\left(\\Omega ) . The uncertainty of the sign of s log s 2 s\\log {s}^{2} in ( 0 , + ∞ ) \\left(0,+\\infty ) has some interest in itself. We will show the existence of positive ground state solution, which is of mountain pass type provided λ ∈ R , μ > 0 \\lambda \\in {\\mathbb{R}},\\mu \\gt 0 and N ≥ 4 N\\ge 4 . While the case of μ < 0 \\mu \\lt 0 is thornier. However, for N = 3 , 4 N=3,4 , λ ∈ ( − ∞ , λ 1 ( Ω ) ) \\lambda \\in \\left(-\\infty ,{\\lambda }_{1}\\left(\\Omega )) , we can also establish the existence of positive solution under some further suitable assumptions. A nonexistence result is also obtained for μ < 0 \\mu \\lt 0 and − ( N − 2 ) μ 2 + ( N − 2 ) μ 2 log − ( N − 2 ) μ 2 + λ − λ 1 ( Ω ) ≥ 0 -\\frac{\\left(N-2)\\mu }{2}+\\frac{\\left(N-2)\\mu }{2}\\log \\left(-\\frac{\\left(N-2)\\mu }{2}\\right)+\\lambda -{\\lambda }_{1}\\left(\\Omega )\\ge 0 if N ≥ 3 N\\ge 3 . Comparing with the results in the study by Brézis and Nirenberg (Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477), some new interesting phenomenon occurs when the parameter μ \\mu on logarithmic perturbation is not zero.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We consider the existence and nonexistence of the positive solution for the following Brézis-Nirenberg problem with logarithmic perturbation: − Δ u = ∣ u ∣ 2 ∗ − 2 u + λ u + μ u log u 2 x ∈ Ω , u = 0 x ∈ ∂ Ω , \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}-\Delta u={| u| }^{{2}^{\ast }-2}u+\lambda u+\mu u\log {u}^{2}\hspace{1.0em}& x\in \Omega ,\\ u=0\hspace{1.0em}& x\in \partial \Omega ,\end{array}\right. where Ω ⊂ R N \Omega \subset {{\mathbb{R}}}^{N} is a bounded open domain, λ , μ ∈ R \lambda ,\mu \in {\mathbb{R}} , N ≥ 3 N\ge 3 and 2 ∗ ≔ 2 N N − 2 {2}^{\ast }:= \frac{2N}{N-2} is the critical Sobolev exponent for the embedding H 0 1 ( Ω ) ↪ L 2 ∗ ( Ω ) {H}_{0}^{1}\left(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{{2}^{\ast }}\left(\Omega ) . The uncertainty of the sign of s log s 2 s\log {s}^{2} in ( 0 , + ∞ ) \left(0,+\infty ) has some interest in itself. We will show the existence of positive ground state solution, which is of mountain pass type provided λ ∈ R , μ > 0 \lambda \in {\mathbb{R}},\mu \gt 0 and N ≥ 4 N\ge 4 . While the case of μ < 0 \mu \lt 0 is thornier. However, for N = 3 , 4 N=3,4 , λ ∈ ( − ∞ , λ 1 ( Ω ) ) \lambda \in \left(-\infty ,{\lambda }_{1}\left(\Omega )) , we can also establish the existence of positive solution under some further suitable assumptions. A nonexistence result is also obtained for μ < 0 \mu \lt 0 and − ( N − 2 ) μ 2 + ( N − 2 ) μ 2 log − ( N − 2 ) μ 2 + λ − λ 1 ( Ω ) ≥ 0 -\frac{\left(N-2)\mu }{2}+\frac{\left(N-2)\mu }{2}\log \left(-\frac{\left(N-2)\mu }{2}\right)+\lambda -{\lambda }_{1}\left(\Omega )\ge 0 if N ≥ 3 N\ge 3 . Comparing with the results in the study by Brézis and Nirenberg (Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477), some new interesting phenomenon occurs when the parameter μ \mu on logarithmic perturbation is not zero.
一类具有临界增长和对数摄动的椭圆型问题正解的存在性
摘要我们考虑了下述具有对数扰动的br - nirenberg问题的正解的存在性和不存在性:−Δ u =∣u∣2∗−2 u + λ u + μ u log u 2 x∈Ω, u = 0 x∈∂Ω, \left {\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}-\Delta u={| u| }^{{2}^{\ast }-2}u+\lambda u+\mu u\log {u}^{2}\hspace{1.0em}& x\in \Omega ,\\ u=0\hspace{1.0em}& x\in \partial \Omega ,\end{array}\right。其中Ω∧R N \Omega\subset{{\mathbb{R}}} ^{N}是有界开放域,λ, μ∈R \lambda, \mu\in{\mathbb{R}}, N≥3 N \ge 3和2∗其中,N−{2}^ {\ast:=}\frac{2N}{N-2}是嵌入h_1 (Ω)“L 2∗(Ω) {H_0}^{1}{}\left (\Omega) \hspace{0.33em}\hookrightarrow ^2\hspace{0.33em}{L}^{{}{\ast}}\left (\Omega)”的临界Sobolev指数。s log s 2 s \log s{^}2{ in(0,+∞)}\left (0,+ \infty)的符号的不确定性本身就很有趣。我们将证明在λ∈R, μ > 0 \lambda\in{\mathbb{R}}, \mu\gt 0和N≥4 N \ge 4的条件下存在山口型正基态解。而μ < 0 \mu\lt 0的情况则比较棘手。然而,对于N=3,4 N=3,4, λ∈(−∞,λ 1 (Ω)) \lambda\in\left (- \infty, {\lambda _1}{}\left (\Omega)),我们还可以在进一步适当的假设下建立正解的存在性。当N≥3 N \ge 3时,得到了μ < 0 \mu\lt 0和−(N−2)μ 2 + (N−2)μ 2 + (N−2)μ 2 + λ−λ 1 (Ω)≥0 - \frac{\left(N-2)\mu }{2} + \frac{\left(N-2)\mu }{2}\log\left (- \frac{\left(N-2)\mu }{2}\right)+ \lambda{ - }{}{\lambda} _1\left (\Omega) \ge 0的不存在性结果。与brsamzis和Nirenberg的研究结果比较(含临界Sobolev指数的非线性椭圆方程的正解)。数学。36(1983),437-477),当对数扰动上的参数μ \mu不为零时,会出现一些新的有趣现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信