A Note on the Maximal Operator on Weighted Morrey Spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
A. K. Lerner
{"title":"A Note on the Maximal Operator on Weighted Morrey Spaces","authors":"A. K. Lerner","doi":"10.1007/s10476-023-0235-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider weighted Morrey spaces <span>\\({\\cal M}_{\\lambda ,{\\cal F}}^p(w)\\)</span> adapted to a family of cubes <span>\\({\\cal F}\\)</span>, with the norm </p><div><div><span>$$\\Vert f\\Vert{_{{\\cal M}_{\\lambda ,{\\cal F}}^p(w)}}: = \\mathop {\\sup }\\limits_{Q \\in {\\cal F}} {\\left( {{1 \\over {|Q{|^\\lambda }}}\\int_Q {|f{|^p}w} } \\right)^{1/p}},$$</span></div></div><p> and the question we deal with is whether a Muckenhoupt-type condition characterizes the boundedness of the Hardy–Littlewood maximal operator on <span>\\({\\cal M}_{\\lambda ,{\\cal F}}^p(w)\\)</span>.</p><p>In the case of the global Morrey spaces (when <span>\\({\\cal F}\\)</span> is the family of all cubes in ℝ<sup><i>n</i></sup>) this question is still open. In the case of the local Morrey spaces (when <span>\\({\\cal F}\\)</span> is the family of all cubes centered at the origin) this question was answered positively in a recent work of Duoandikoetxea and Rosenthal [2].</p><p>We obtain an extension of [2] by showing that the answer is positive when <span>\\({\\cal F}\\)</span> is the family of all cubes centered at a sequence of points in ℝ<sup><i>n</i></sup> satisfying a certain lacunary-type condition.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0235-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0235-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider weighted Morrey spaces \({\cal M}_{\lambda ,{\cal F}}^p(w)\) adapted to a family of cubes \({\cal F}\), with the norm

$$\Vert f\Vert{_{{\cal M}_{\lambda ,{\cal F}}^p(w)}}: = \mathop {\sup }\limits_{Q \in {\cal F}} {\left( {{1 \over {|Q{|^\lambda }}}\int_Q {|f{|^p}w} } \right)^{1/p}},$$

and the question we deal with is whether a Muckenhoupt-type condition characterizes the boundedness of the Hardy–Littlewood maximal operator on \({\cal M}_{\lambda ,{\cal F}}^p(w)\).

In the case of the global Morrey spaces (when \({\cal F}\) is the family of all cubes in ℝn) this question is still open. In the case of the local Morrey spaces (when \({\cal F}\) is the family of all cubes centered at the origin) this question was answered positively in a recent work of Duoandikoetxea and Rosenthal [2].

We obtain an extension of [2] by showing that the answer is positive when \({\cal F}\) is the family of all cubes centered at a sequence of points in ℝn satisfying a certain lacunary-type condition.

关于加权Morrey空间上最大算子的一个注记
本文考虑了适用于一组立方体\({\cal F}\)的加权Morrey空间\({\cal M}_{\lambda ,{\cal F}}^p(w)\),其范数为$$\Vert f\Vert{_{{\cal M}_{\lambda ,{\cal F}}^p(w)}}: = \mathop {\sup }\limits_{Q \in {\cal F}} {\left( {{1 \over {|Q{|^\lambda }}}\int_Q {|f{|^p}w} } \right)^{1/p}},$$,我们处理的问题是在\({\cal M}_{\lambda ,{\cal F}}^p(w)\)上是否存在muckenhoudt型条件表征Hardy-Littlewood极大算子的有界性。对于全局Morrey空间(当\({\cal F}\)是所有立方体的族),这个问题仍然是开放的。在局部Morrey空间的情况下(\({\cal F}\)是所有以原点为中心的立方体的族),这个问题在duoanddikoetxea和Rosenthal bbb最近的工作中得到了肯定的回答。我们通过证明当\({\cal F}\)是满足一定空间型条件的以点序列为中心的所有立方体的族时,答案是正的,从而得到[2]的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信