{"title":"Interaction Between Two Types of Earthworm and Ageratum on Soil Physicochemical Properties","authors":"I. Nweke","doi":"10.30560/AS.V2N2P1","DOIUrl":null,"url":null,"abstract":"Earthworms are one of the most important soil organisms in tropical ecosystem as they influence mineralogical, structural and microbial composition of soil. The study investigated the effect of interaction between two Nigerian earthworms Eudrilus Eugeniae and Irridodrilus sp and Ageratum species (AG) on soil physicochemical properties in potted experiment. The treatment consisted of 1000g subsoil treated with ageratum (AG); Ageratum + soil inoculated with Eudrilus Eugeniae (AE), Ageratum + soil inoculated with Irridodrilus sp (AI) and control soil not treated (CO). The results of the study showed remarkable differences between the treatments in soil physicochemical properties. The pots inoculated with Eudrilus Eugeniae (AE) relative to other treatments produced high quality ion exchange as evidence from the high (CEC) recorded, enhanced soil aggregation 73% compared to 52% recorded in AI, stabilization of soil aggregates and enhanced availability of nutrient elements by 150% compared to 120% observed in AI. High level of soil pH (9.15) was recorded in AE. AG induced 62% increase in soil erodibility and only 9% increase in availability of soil nutrients. AG was found to be toxic particularly to Irridodrilus whose percentage survival was 0% relative to 67% of Eudrilus Eugeniae whose weight loss was 27%. Ageratum is a bio-pesticide and bio-fertilizer of which its production is simple and cost effective and the efficacy for soil management will require the presence of active soil organisms like earthworms to process Ageratum adequately as was found in this study. The primary materials used in this study are abundantly available and within the reach of farmers. The production and application is eco-friendly, promotes sustainable soil productivity, soil conservation and environmental health. This technology will discourage the use of chemical pesticides and fertilizers in the study area if well integrated in crop production activities.","PeriodicalId":7435,"journal":{"name":"Agricultural Science","volume":" ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30560/AS.V2N2P1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Earthworms are one of the most important soil organisms in tropical ecosystem as they influence mineralogical, structural and microbial composition of soil. The study investigated the effect of interaction between two Nigerian earthworms Eudrilus Eugeniae and Irridodrilus sp and Ageratum species (AG) on soil physicochemical properties in potted experiment. The treatment consisted of 1000g subsoil treated with ageratum (AG); Ageratum + soil inoculated with Eudrilus Eugeniae (AE), Ageratum + soil inoculated with Irridodrilus sp (AI) and control soil not treated (CO). The results of the study showed remarkable differences between the treatments in soil physicochemical properties. The pots inoculated with Eudrilus Eugeniae (AE) relative to other treatments produced high quality ion exchange as evidence from the high (CEC) recorded, enhanced soil aggregation 73% compared to 52% recorded in AI, stabilization of soil aggregates and enhanced availability of nutrient elements by 150% compared to 120% observed in AI. High level of soil pH (9.15) was recorded in AE. AG induced 62% increase in soil erodibility and only 9% increase in availability of soil nutrients. AG was found to be toxic particularly to Irridodrilus whose percentage survival was 0% relative to 67% of Eudrilus Eugeniae whose weight loss was 27%. Ageratum is a bio-pesticide and bio-fertilizer of which its production is simple and cost effective and the efficacy for soil management will require the presence of active soil organisms like earthworms to process Ageratum adequately as was found in this study. The primary materials used in this study are abundantly available and within the reach of farmers. The production and application is eco-friendly, promotes sustainable soil productivity, soil conservation and environmental health. This technology will discourage the use of chemical pesticides and fertilizers in the study area if well integrated in crop production activities.