Extended Spectra for Some Composition Operators on Weighted Hardy Spaces

Pub Date : 2022-10-10 DOI:10.1134/S0016266322020010
I. F. Z. Bensaid, F. León-Saavedra, P. Romero de la Rosa
{"title":"Extended Spectra for Some Composition Operators on Weighted Hardy Spaces","authors":"I. F. Z. Bensaid,&nbsp;F. León-Saavedra,&nbsp;P. Romero de la Rosa","doi":"10.1134/S0016266322020010","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\alpha\\)</span> be a complex scalar, and let <span>\\(A\\)</span> be a bounded linear operator on a Hilbert space <span>\\(H\\)</span>. We say that <span>\\(\\alpha\\)</span> is an extended eigenvalue of <span>\\(A\\)</span> if there exists a nonzero bounded linear operator <span>\\(X\\)</span> such that <span>\\(AX=\\alpha XA\\)</span>. In weighted Hardy spaces invariant under automorphisms, we completely compute the extended eigenvalues of composition operators induced by linear fractional self-mappings of the unit disk <span>\\(\\mathbb{D}\\)</span> with one fixed point in <span>\\(\\mathbb{D}\\)</span> and one outside <span>\\(\\overline{\\mathbb{D}}\\)</span>. Such classes of transformations include elliptic and loxodromic mappings as well as a hyperbolic nonautomorphic mapping. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\alpha\) be a complex scalar, and let \(A\) be a bounded linear operator on a Hilbert space \(H\). We say that \(\alpha\) is an extended eigenvalue of \(A\) if there exists a nonzero bounded linear operator \(X\) such that \(AX=\alpha XA\). In weighted Hardy spaces invariant under automorphisms, we completely compute the extended eigenvalues of composition operators induced by linear fractional self-mappings of the unit disk \(\mathbb{D}\) with one fixed point in \(\mathbb{D}\) and one outside \(\overline{\mathbb{D}}\). Such classes of transformations include elliptic and loxodromic mappings as well as a hyperbolic nonautomorphic mapping.

分享
查看原文
加权Hardy空间上一些复合算子的扩展谱
设\(\alpha\)是一个复标量,设\(A\)是希尔伯特空间\(H\)上的一个有界线性算子。我们说\(\alpha\)是\(A\)的扩展特征值,如果存在一个非零有界线性算子\(X\)使得\(AX=\alpha XA\)。在自同构的加权Hardy空间不变条件下,我们完整地计算了单位盘\(\mathbb{D}\)的线性分数自映射所导出的复合算子的扩展特征值,其中\(\mathbb{D}\)内有一个不动点,\(\overline{\mathbb{D}}\)外有一个不动点。这类变换包括椭圆和直线映射以及双曲非自同构映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信