Admissible endpoints of gaps in the Lagrange spectrum

Q4 Mathematics
D. Gayfulin
{"title":"Admissible endpoints of gaps in the Lagrange spectrum","authors":"D. Gayfulin","doi":"10.2140/moscow.2019.8.47","DOIUrl":null,"url":null,"abstract":"We call a positive real number $\\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\\alpha$ such that $\\mu(\\alpha)=\\lambda$. Here $\\mu(\\alpha)$ denotes the Lagrange constant of $\\alpha$ - maximal real number $c$ such that $\\forall \\varepsilon>0$ the inequality $|\\alpha-\\frac{p}{q}|\\le\\frac{1}{(c-\\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.47","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We call a positive real number $\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\alpha$ such that $\mu(\alpha)=\lambda$. Here $\mu(\alpha)$ denotes the Lagrange constant of $\alpha$ - maximal real number $c$ such that $\forall \varepsilon>0$ the inequality $|\alpha-\frac{p}{q}|\le\frac{1}{(c-\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.
拉格朗日谱间隙的容许端点
如果一个正实数$\lamba$属于拉格朗日谱,并且存在一个无理数$\alpha$,使得$\mu(\alpha)=\lambda$,则我们称其为可容许的。这里$\mu(\alpha)$表示$\alpha$-最大实数$c$的拉格朗日常数,使得$\forall\varepsilon>0$不等式$|\alpha-\frac{p}{q}|\le\frac{1}{(c-\varepsilion)q^2}$对于相对素数$p$和$q$有无限多个解。本文建立了拉格朗日谱元可容许的一个充要条件,构造了一个不可容许数的无穷级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信