The gaussian convolution and reproducing kernels associated with the Hankel multidimensional operator

Pub Date : 2023-06-08 DOI:10.1007/s10476-023-0219-1
B. Amri
{"title":"The gaussian convolution and reproducing kernels associated with the Hankel multidimensional operator","authors":"B. Amri","doi":"10.1007/s10476-023-0219-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Hankel multidimensional operator defined on]0, +∞[<sup><i>n</i></sup> by </p><div><div><span>$${\\Delta _\\alpha} = \\sum\\limits_{j = 1}^n {\\left({{{{\\partial ^2}} \\over {\\partial x_j^2}} + {{2{\\alpha _j} + 1} \\over {{x_j}}}{\\partial \\over {\\partial {x_j}}}} \\right)} $$</span></div></div><p> where <span>\\(\\alpha = ({\\alpha _1},{\\alpha _2}, \\ldots ,{\\alpha _n}) \\in ] - {1 \\over 2}, + \\infty {[^n}\\)</span>. We give the most important harmonic analysis results related to the operator Δ<sub><i>α</i></sub> (translation operators <i>τ</i><sub><i>x</i></sub>, convolution product * and Hankel transform <i>ℌ</i><sub><i>α</i></sub>).</p><p>Using harmonic analysis results, we study spaces of Sobolev type for which we make explicit kernels reproducing. Next, we define and study the gaussian convolution <span>\\({{\\cal G}^t}\\)</span>, <i>t</i> &gt; 0, associated with the Hankel multidimensinal operator Δ<sub><i>α</i></sub>. This transformation generalizes the classical gaussian transformation. We establish the most important properties of this transformation. In particular, we show that the gaussian transformation solves the heat equation, that is </p><div><div><span>$${\\Delta _\\alpha}(u)(x,t) = {{\\partial u} \\over {\\partial t}}(x,t),\\,\\,\\,\\,\\,(x,t) \\in [0, + \\infty {[^n} \\times ]0, + \\infty [.$$</span></div></div><p>In the second part of this work, we prove the existence and uniqueness of the extremal function associated with the gaussian transformation. We express this function using the reproducing kernels and we prove the important estimates for this extremal function.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0219-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Hankel multidimensional operator defined on]0, +∞[n by

$${\Delta _\alpha} = \sum\limits_{j = 1}^n {\left({{{{\partial ^2}} \over {\partial x_j^2}} + {{2{\alpha _j} + 1} \over {{x_j}}}{\partial \over {\partial {x_j}}}} \right)} $$

where \(\alpha = ({\alpha _1},{\alpha _2}, \ldots ,{\alpha _n}) \in ] - {1 \over 2}, + \infty {[^n}\). We give the most important harmonic analysis results related to the operator Δα (translation operators τx, convolution product * and Hankel transform α).

Using harmonic analysis results, we study spaces of Sobolev type for which we make explicit kernels reproducing. Next, we define and study the gaussian convolution \({{\cal G}^t}\), t > 0, associated with the Hankel multidimensinal operator Δα. This transformation generalizes the classical gaussian transformation. We establish the most important properties of this transformation. In particular, we show that the gaussian transformation solves the heat equation, that is

$${\Delta _\alpha}(u)(x,t) = {{\partial u} \over {\partial t}}(x,t),\,\,\,\,\,(x,t) \in [0, + \infty {[^n} \times ]0, + \infty [.$$

In the second part of this work, we prove the existence and uniqueness of the extremal function associated with the gaussian transformation. We express this function using the reproducing kernels and we prove the important estimates for this extremal function.

分享
查看原文
与Hankel多维算子相关的高斯卷积和再生核
我们考虑定义在]0,+∞[n上的Hankel多维算子,由$${\Delta_\alpha}=\sum\limits_{j=1}^n{\left({{\partial^2}}\over{\ppartial x_j^2})+{2}\alpha_j}+1}\over{{x_j}}}{\ partial\over{\ partial{x_j}})}$$定义,其中\(\alpha=({\alpha_1},{\aalpha_2},\ldots,{alpha_n})\in]-{1}over 2},我们给出了与算子Δα(平移算子τx、卷积乘积*和Hankel变换)有关的最重要的调和分析结果ℌα) 利用调和分析结果,我们研究了Sobolev类型的空间,我们对其进行了显式核的再现。接下来,我们定义并研究高斯卷积({{\cal G}^t}),t>;0,与Hankel多维算子Δα相关。该变换推广了经典的高斯变换。我们建立了这个变换最重要的性质。特别地,我们证明了高斯变换求解热方程,即$${\Delta_\alpha}(u)(x,t)={{\partial u}\over{\partial t}}(x,t),\,\,+\infty[.$$在本文的第二部分中,我们证明了与高斯变换相关的极值函数的存在性和唯一性。我们使用再生核来表达这个函数,并证明了这个极值函数的重要估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信