BIG COHEN–MACAULAY TEST IDEALS IN EQUAL CHARACTERISTIC ZERO VIA ULTRAPRODUCTS

Pub Date : 2022-07-09 DOI:10.1017/nmj.2022.41
T. Yamaguchi
{"title":"BIG COHEN–MACAULAY TEST IDEALS IN EQUAL CHARACTERISTIC ZERO VIA ULTRAPRODUCTS","authors":"T. Yamaguchi","doi":"10.1017/nmj.2022.41","DOIUrl":null,"url":null,"abstract":"Abstract Utilizing ultraproducts, Schoutens constructed a big Cohen–Macaulay (BCM) algebra \n$\\mathcal {B}(R)$\n over a local domain R essentially of finite type over \n$\\mathbb {C}$\n . We show that if R is normal and \n$\\Delta $\n is an effective \n$\\mathbb {Q}$\n -Weil divisor on \n$\\operatorname {Spec} R$\n such that \n$K_R+\\Delta $\n is \n$\\mathbb {Q}$\n -Cartier, then the BCM test ideal \n$\\tau _{\\widehat {\\mathcal {B}(R)}}(\\widehat {R},\\widehat {\\Delta })$\n of \n$(\\widehat {R},\\widehat {\\Delta })$\n with respect to \n$\\widehat {\\mathcal {B}(R)}$\n coincides with the multiplier ideal \n$\\mathcal {J}(\\widehat {R},\\widehat {\\Delta })$\n of \n$(\\widehat {R},\\widehat {\\Delta })$\n , where \n$\\widehat {R}$\n and \n$\\widehat {\\mathcal {B}(R)}$\n are the \n$\\mathfrak {m}$\n -adic completions of R and \n$\\mathcal {B}(R)$\n , respectively, and \n$\\widehat {\\Delta }$\n is the flat pullback of \n$\\Delta $\n by the canonical morphism \n$\\operatorname {Spec} \\widehat {R}\\to \\operatorname {Spec} R$\n . As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Utilizing ultraproducts, Schoutens constructed a big Cohen–Macaulay (BCM) algebra $\mathcal {B}(R)$ over a local domain R essentially of finite type over $\mathbb {C}$ . We show that if R is normal and $\Delta $ is an effective $\mathbb {Q}$ -Weil divisor on $\operatorname {Spec} R$ such that $K_R+\Delta $ is $\mathbb {Q}$ -Cartier, then the BCM test ideal $\tau _{\widehat {\mathcal {B}(R)}}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$ with respect to $\widehat {\mathcal {B}(R)}$ coincides with the multiplier ideal $\mathcal {J}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$ , where $\widehat {R}$ and $\widehat {\mathcal {B}(R)}$ are the $\mathfrak {m}$ -adic completions of R and $\mathcal {B}(R)$ , respectively, and $\widehat {\Delta }$ is the flat pullback of $\Delta $ by the canonical morphism $\operatorname {Spec} \widehat {R}\to \operatorname {Spec} R$ . As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.
分享
查看原文
BIG-COHEN–MACAULAY通过超积在等特征零中检验理想
利用超积,Schoutens在$\mathbb {C}$上本质上是有限型的局部区域R上构造了一个大的Cohen-Macaulay (BCM)代数$\mathcal {B}(R)$。我们证明,如果R是正常的,$\Delta $是$\mathbb {Q}$ - $\operatorname {Spec} R$的有效weil除数,使得$K_R+\Delta $是$\mathbb {Q}$ -Cartier,则$(\widehat {R},\widehat {\Delta })$对$\widehat {\mathcal {B}(R)}$的BCM测试理想$\tau _{\widehat {\mathcal {B}(R)}}(\widehat {R},\widehat {\Delta })$与$(\widehat {R},\widehat {\Delta })$的乘子理想$\mathcal {J}(\widehat {R},\widehat {\Delta })$重合,其中$\widehat {R}$和$\widehat {\mathcal {B}(R)}$分别是R和$\mathcal {B}(R)$的$\mathfrak {m}$ -adic补完。$\widehat {\Delta }$是规范态射$\operatorname {Spec} \widehat {R}\to \operatorname {Spec} R$对$\Delta $的平回调。作为应用,我们得到了纯环扩展下乘法器理想的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信