The nodal set of solutions to anomalous equations

IF 0.2 Q4 MATHEMATICS
Giorgio Tortone
{"title":"The nodal set of solutions to anomalous equations","authors":"Giorgio Tortone","doi":"10.6092/ISSN.2240-2829/10367","DOIUrl":null,"url":null,"abstract":"This note focuses on the geometric-theoretic analysis of the nodal set of solutions to specific degenerate or singular equations. As they belong to the Muckenhoupt class A_2, these operators appear in the seminal works of Fabes, Kenig, Jerison and Serapioni. In particular, they have recently attracted a lot of attention in the last decade due to their link to the local realization of the fractional Laplacian. The  goal is to get a glimpse of the complete theory of the nodal set of solutions of such equations in the spirit of the seminal works of Hardt, Simon, Han and Lin.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"10 1","pages":"98-109"},"PeriodicalIF":0.2000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This note focuses on the geometric-theoretic analysis of the nodal set of solutions to specific degenerate or singular equations. As they belong to the Muckenhoupt class A_2, these operators appear in the seminal works of Fabes, Kenig, Jerison and Serapioni. In particular, they have recently attracted a lot of attention in the last decade due to their link to the local realization of the fractional Laplacian. The  goal is to get a glimpse of the complete theory of the nodal set of solutions of such equations in the spirit of the seminal works of Hardt, Simon, Han and Lin.
反常方程解的节点集
本文着重于特定退化或奇异方程解的节点集的几何理论分析。由于它们属于Muckenhoupt类A_2,这些算子出现在Fabes、Kenig、Jerison和Serapioni的开创性著作中。特别是,在过去的十年里,由于它们与分数拉普拉斯算子的局部实现有关,它们最近引起了很多关注。我们的目标是本着Hardt、Simon、Han和Lin的开创性著作的精神,一窥这类方程的节点解集的完整理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信