{"title":"The nodal set of solutions to anomalous equations","authors":"Giorgio Tortone","doi":"10.6092/ISSN.2240-2829/10367","DOIUrl":null,"url":null,"abstract":"This note focuses on the geometric-theoretic analysis of the nodal set of solutions to specific degenerate or singular equations. As they belong to the Muckenhoupt class A_2, these operators appear in the seminal works of Fabes, Kenig, Jerison and Serapioni. In particular, they have recently attracted a lot of attention in the last decade due to their link to the local realization of the fractional Laplacian. The goal is to get a glimpse of the complete theory of the nodal set of solutions of such equations in the spirit of the seminal works of Hardt, Simon, Han and Lin.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"10 1","pages":"98-109"},"PeriodicalIF":0.2000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This note focuses on the geometric-theoretic analysis of the nodal set of solutions to specific degenerate or singular equations. As they belong to the Muckenhoupt class A_2, these operators appear in the seminal works of Fabes, Kenig, Jerison and Serapioni. In particular, they have recently attracted a lot of attention in the last decade due to their link to the local realization of the fractional Laplacian. The goal is to get a glimpse of the complete theory of the nodal set of solutions of such equations in the spirit of the seminal works of Hardt, Simon, Han and Lin.