The distance spectrum of two new operations of graphs

IF 0.6 Q3 MATHEMATICS
Zikai Tang, Renfang Wu, Hanlin Chen, H. Deng
{"title":"The distance spectrum of two new operations of graphs","authors":"Zikai Tang, Renfang Wu, Hanlin Chen, H. Deng","doi":"10.22108/TOC.2020.116372.1634","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph with vertex set $V(G)={v_1, v_2,ldots,v_n}$‎. ‎The distance matrix $D=D(G)$ of $G$ is defined so that its $(i,j)$-entry is equal to the distance $d_G(v_i,v_j)$ between the vertices $v_i$ and $v_j$ of $G$‎. ‎The eigenvalues ${mu_1, mu_2,ldots,mu_n}$ of $D(G)$ are the $D$-eigenvalues of $G$ and form the distance spectrum or the $D$-spectrum of $G$‎, ‎denoted by $Spec_D(G)$‎. ‎In this paper‎, ‎we introduce two new operations $G_1blacksquare_k G_2$ and $G_1blacklozenge_k G_2$ on graphs $G_1$ and $G_2$‎, ‎and describe the distance spectra of $G_1blacksquare_k G_2$ and $G_1blacklozenge_k G_2$ of regular graphs $G_1$ and $G_2 $ in terms of their adjacency spectra‎. ‎By using these results‎, ‎we obtain some new integral adjacency spectrum graphs‎, ‎integral distance spectrum graphs and a number of families of sets of noncospectral graphs with equal distance energy‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"125-138"},"PeriodicalIF":0.6000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.116372.1634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $G$ be a connected graph with vertex set $V(G)={v_1, v_2,ldots,v_n}$‎. ‎The distance matrix $D=D(G)$ of $G$ is defined so that its $(i,j)$-entry is equal to the distance $d_G(v_i,v_j)$ between the vertices $v_i$ and $v_j$ of $G$‎. ‎The eigenvalues ${mu_1, mu_2,ldots,mu_n}$ of $D(G)$ are the $D$-eigenvalues of $G$ and form the distance spectrum or the $D$-spectrum of $G$‎, ‎denoted by $Spec_D(G)$‎. ‎In this paper‎, ‎we introduce two new operations $G_1blacksquare_k G_2$ and $G_1blacklozenge_k G_2$ on graphs $G_1$ and $G_2$‎, ‎and describe the distance spectra of $G_1blacksquare_k G_2$ and $G_1blacklozenge_k G_2$ of regular graphs $G_1$ and $G_2 $ in terms of their adjacency spectra‎. ‎By using these results‎, ‎we obtain some new integral adjacency spectrum graphs‎, ‎integral distance spectrum graphs and a number of families of sets of noncospectral graphs with equal distance energy‎.
图的两种新操作的距离谱
设$G$是顶点集为$V(G)={V_1,V_2,ldots,V_n}的连通图$‎. ‎定义$G$的距离矩阵$D=D(G)$,使得其$(i,j)$条目等于$G的顶点$v_i$和$v_j$之间的距离$D_G(v_i,v_j)$$‎. ‎$D(G)$的特征值${mu_1,mu_2,ldots,mu_n}$是$G$的$D$-特征值,并形成$G的距离谱或$D$-谱$‎, ‎用$Spec_D(G)表示$‎. ‎在本文中‎, ‎我们在图$G_1$和$G_2上引入了两个新的运算$G_1blacksquare_kG_2$和$G_1blacklozenge_kG_2*$‎, ‎并用正则图$G_1$和$G_2$的邻接谱描述了它们的距离谱‎. ‎通过使用这些结果‎, ‎我们得到了一些新的积分邻接谱图‎, ‎积分距离谱图与等距离能非谱图的若干族‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信