{"title":"Projections in Moduli Spaces of the Kleinian Groups","authors":"Hala Alaqad, J. Gong, G. Martin","doi":"10.1155/2022/6311193","DOIUrl":null,"url":null,"abstract":"<jats:p>A two-generator Kleinian group <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>g</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> can be naturally associated with a discrete group <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>ϕ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> with the generator <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>ϕ</mi>\n </math>\n </jats:inline-formula> of order two and where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>ϕ</mi>\n <mi>f</mi>\n <msup>\n <mrow>\n <mi>ϕ</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>g</mi>\n <mi>f</mi>\n <msup>\n <mrow>\n <mi>g</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n <mo>⊂</mo>\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>g</mi>\n </mrow>\n </mfenced>\n <mo>,</mo>\n <mfenced open=\"[\" close=\"]\">\n <mrow>\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>ϕ</mi>\n </mrow>\n </mfenced>\n <mtext>: </mtext>\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>g</mi>\n <mi>f</mi>\n <msup>\n <mrow>\n <mi>g</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mn>2</mn>\n <mo>.</mo>\n </math>\n </jats:inline-formula> This is useful in studying the geometry of the Kleinian groups since <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>g</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> will be discrete only if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>ϕ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is, and the moduli space of groups <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>ϕ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is one complex dimension less. This gives a necessary condition in a simpler space to determine the discreteness of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"〈\" close=\"〉\">\n <mrow>\n <mi>f</mi>\n <mo>,</mo>\n <mi>g</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. The dimension reduction here is realised by a projection of principal characters of the two-generator Kleinian groups. In applications, it is important to know that the image of the moduli space of Kleinian groups under this projection is closed and, among other results, we show how this follows from Jørgensen’s results on algebraic convergence.</jats:p>","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6311193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
A two-generator Kleinian group can be naturally associated with a discrete group with the generator of order two and where This is useful in studying the geometry of the Kleinian groups since will be discrete only if is, and the moduli space of groups is one complex dimension less. This gives a necessary condition in a simpler space to determine the discreteness of . The dimension reduction here is realised by a projection of principal characters of the two-generator Kleinian groups. In applications, it is important to know that the image of the moduli space of Kleinian groups under this projection is closed and, among other results, we show how this follows from Jørgensen’s results on algebraic convergence.
一个双生成子Kleinian群f,g可以自然地与离散群f相关联,具有二阶的生成器ξ,并且其中f,ffe f ffe−1=f,g f g−1⊂f、g,fffe:f,g f g−1=2。这对于研究Kleinian群的几何是有用的,因为f,g只有当f,Γ是并且群f,ξ是一个复杂的维度。这给出了在一个简单空间中确定f,g离散性的一个必要条件。这里的降维是通过两个生成Kleinian群的主要特征的投影来实现的。在应用中,重要的是要知道在这种投影下Kleinian群的模空间的图像是封闭的,并且,在其他结果中,我们从Jørgensen关于代数收敛的结果中展示了这是如何得到的。
期刊介绍:
Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.