Cost-Effectiveness Of Tailings Dewatering And Stacking

IF 0.3 Q4 ENGINEERING, GEOLOGICAL
Sophie Flottmann, David Williams, Danish Kazmi
{"title":"Cost-Effectiveness Of Tailings Dewatering And Stacking","authors":"Sophie Flottmann, David Williams, Danish Kazmi","doi":"10.56295/agj5814","DOIUrl":null,"url":null,"abstract":"Over the last one hundred years, tailings dams have failed globally at a rate of 2 to 5 per annum. This failure rate is considered unacceptable by the community and by the mining industry. The conventional transport of slurry or thickened tailings and their storage in a tailings dam, requires low capital and operational expenditure, as slurry tailings can be transported by pipeline using relatively inexpensive and robust centrifugal pumps. Recently, the filtration of tailings, their transport by conveyor or truck, and “dry” stacking have been seen as an alternate method of tailings management. However, filtration and dry stacking are considered expensive. Over the full life cycle, including post-closure, of filtration and a dry stack facility, the potential to increase water recovery for recycling and increased options post-closure can lead to a reduction in the total expense of a dry stack facility. This study aimed to contribute to understanding of the cost-effectiveness of tailings dewatering and dry stacking as a tailings management method. Various tailings samples from different locations and with different characteristics were tested for their filtration potential. The potential for monetary savings through the reuse/recycling of the water recovered from the tailings through filtration was a particular focus. While tailings with higher clay mineral contents had more potential for water recovery than coarser-grained tailings, they were also more difficult to dewater. Tailings with lower clay mineral contents were relatively easy to dewater, requiring a short residence time, leading to increased water recovery and volume reduction potential. The results identified that there is significant potential for water recovery, leading to monetary savings through the reuse/recycling of water, potential for storage volume reduction, and potential for higher value post-closure uses.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last one hundred years, tailings dams have failed globally at a rate of 2 to 5 per annum. This failure rate is considered unacceptable by the community and by the mining industry. The conventional transport of slurry or thickened tailings and their storage in a tailings dam, requires low capital and operational expenditure, as slurry tailings can be transported by pipeline using relatively inexpensive and robust centrifugal pumps. Recently, the filtration of tailings, their transport by conveyor or truck, and “dry” stacking have been seen as an alternate method of tailings management. However, filtration and dry stacking are considered expensive. Over the full life cycle, including post-closure, of filtration and a dry stack facility, the potential to increase water recovery for recycling and increased options post-closure can lead to a reduction in the total expense of a dry stack facility. This study aimed to contribute to understanding of the cost-effectiveness of tailings dewatering and dry stacking as a tailings management method. Various tailings samples from different locations and with different characteristics were tested for their filtration potential. The potential for monetary savings through the reuse/recycling of the water recovered from the tailings through filtration was a particular focus. While tailings with higher clay mineral contents had more potential for water recovery than coarser-grained tailings, they were also more difficult to dewater. Tailings with lower clay mineral contents were relatively easy to dewater, requiring a short residence time, leading to increased water recovery and volume reduction potential. The results identified that there is significant potential for water recovery, leading to monetary savings through the reuse/recycling of water, potential for storage volume reduction, and potential for higher value post-closure uses.
尾矿脱水堆放的成本效益
在过去的一百年里,全球的尾矿坝以每年2到5座的速度倒塌。社区和采矿业认为这种失败率是不可接受的。浆体或浓缩尾矿的常规运输及其在尾矿坝中的储存需要较低的资金和运营支出,因为浆体尾矿可以通过管道运输,使用相对便宜和坚固的离心泵。最近,尾矿的过滤,他们的输送机或卡车运输,和“干”堆已被视为一种备选的尾矿管理方法。然而,过滤和干堆被认为是昂贵的。在整个生命周期中,包括关闭后,过滤和干堆设施,增加水回收再利用的潜力和增加关闭后的选择,可以减少干堆设施的总费用。本研究旨在了解尾矿脱水和干堆作为一种尾矿管理方法的成本效益。对不同地点、不同特性的尾矿样品进行了过滤电位测试。通过过滤从尾矿中回收的水的再利用/再循环节省资金的潜力是一个特别的重点。粘土矿物含量高的尾矿比粗粒尾矿具有更大的回水潜力,但也更难脱水。粘土矿物含量低的尾矿相对容易脱水,停留时间短,采收率和体积缩小潜力增大。结果表明,水回收的潜力巨大,可以通过水的再利用/再循环节省资金,减少储存量的潜力,以及关闭后使用的更高价值的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Australian Geomechanics Journal
Australian Geomechanics Journal ENGINEERING, GEOLOGICAL-
CiteScore
0.40
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信