A STDP Rule that Favours Chaotic Spiking over Regular Spiking of Neurons

M. Aoun
{"title":"A STDP Rule that Favours Chaotic Spiking over Regular Spiking of Neurons","authors":"M. Aoun","doi":"10.5121/IJAIA.2021.12303","DOIUrl":null,"url":null,"abstract":"We compare the number of states of a Spiking Neural Network (SNN) composed from chaotic spiking neurons versus the number of states of a SNN composed from regular spiking neurons while both SNNs implementing a Spike Timing Dependent Plasticity (STDP) rule that we created. We find out that this STDP rule favors chaotic spiking since the number of states is larger in the chaotic SNN than the regular SNN. This chaotic favorability is not general; it is exclusive to this STDP rule only. This research falls under our long-term investigation of STDP and chaos theory.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"25-33"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2021.12303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We compare the number of states of a Spiking Neural Network (SNN) composed from chaotic spiking neurons versus the number of states of a SNN composed from regular spiking neurons while both SNNs implementing a Spike Timing Dependent Plasticity (STDP) rule that we created. We find out that this STDP rule favors chaotic spiking since the number of states is larger in the chaotic SNN than the regular SNN. This chaotic favorability is not general; it is exclusive to this STDP rule only. This research falls under our long-term investigation of STDP and chaos theory.
一个有利于神经元混沌尖峰而非规则尖峰的STDP规则
我们比较了由混沌尖峰神经元组成的尖峰神经网络(SNN)的状态数与由规则尖峰神经元构成的SNN的状态数,同时两个SNN都实现了我们创建的尖峰时间相关塑性(STDP)规则。我们发现,这个STDP规则有利于混沌尖峰,因为混沌SNN中的状态数量比常规SNN中大。这种混乱的好感度并不普遍;它仅是该STDP规则的专属。这项研究属于我们对STDP和混沌理论的长期研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信