A surrogate model based calibration method for structural adhesive joint progressive failure simulations

IF 2.9 4区 材料科学 Q2 ENGINEERING, CHEMICAL
Zhongjie Yue, Qiuren Chen, Li Huang, Yudong Fang, Mushi Li, Shiyao Huang, Hailong Zhao, Zuguo Bao, Xianhui Wang, Weijian Han
{"title":"A surrogate model based calibration method for structural adhesive joint progressive failure simulations","authors":"Zhongjie Yue, Qiuren Chen, Li Huang, Yudong Fang, Mushi Li, Shiyao Huang, Hailong Zhao, Zuguo Bao, Xianhui Wang, Weijian Han","doi":"10.1080/00218464.2022.2149325","DOIUrl":null,"url":null,"abstract":"ABSTRACT An integrated adhesive material model calibration method is proposed for adhesively bonded joints’ deformation and progressive failure simulations under mixed loading modes. In this method, a surrogate model is trained to express the intrinsic numerical relationship between the key parameters (e.g., the yield normal stress and yield shear stress) and the simulated load-displacement curves of the bonded specimens. The parameter calibration process of the material model under multiple loading conditions is described as a multi-objective optimization problem. To minimize the load-displacement curve errors among the CAE simulation model and the experiment data, the model parameters are calibrated effectively based on the surrogate model using the genetic algorithm. The validity and efficiency of the proposed calibration method is verified by comparing the test data under various loading conditions. The better precision and efficiency indicates the potential of using this framework to effectively calibrate material properties without performing time-consuming CAE simulations.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":"99 1","pages":"1579 - 1606"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00218464.2022.2149325","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT An integrated adhesive material model calibration method is proposed for adhesively bonded joints’ deformation and progressive failure simulations under mixed loading modes. In this method, a surrogate model is trained to express the intrinsic numerical relationship between the key parameters (e.g., the yield normal stress and yield shear stress) and the simulated load-displacement curves of the bonded specimens. The parameter calibration process of the material model under multiple loading conditions is described as a multi-objective optimization problem. To minimize the load-displacement curve errors among the CAE simulation model and the experiment data, the model parameters are calibrated effectively based on the surrogate model using the genetic algorithm. The validity and efficiency of the proposed calibration method is verified by comparing the test data under various loading conditions. The better precision and efficiency indicates the potential of using this framework to effectively calibrate material properties without performing time-consuming CAE simulations.
基于代理模型的结构粘接渐进破坏模拟标定方法
摘要针对粘接接头在混合加载模式下的变形和渐进破坏模拟,提出了一种集成的粘接材料模型标定方法。该方法通过训练一个代理模型来表达关键参数(如屈服法向应力和屈服剪应力)与模拟试件的荷载-位移曲线之间的内在数值关系。将多载荷条件下材料模型的参数标定过程描述为一个多目标优化问题。为了减小CAE仿真模型与实验数据之间的载荷-位移曲线误差,采用遗传算法对模型参数进行了有效标定。通过对比不同载荷条件下的试验数据,验证了所提标定方法的有效性和高效性。更高的精度和效率表明,使用该框架可以有效地校准材料性能,而无需执行耗时的CAE模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Adhesion
Journal of Adhesion 工程技术-材料科学:综合
CiteScore
5.30
自引率
9.10%
发文量
55
审稿时长
1 months
期刊介绍: The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信