V. Minkin, A. Bobrov, V. Akimov, Еugeniia Lobanova, Yana Nikolaenko, Oleg Martynov, G. Zazulin
{"title":"Covid-19 Diagnosis by Artificial Intelligence Based on Vibraimage Measurement of Behavioral Parameters","authors":"V. Minkin, A. Bobrov, V. Akimov, Еugeniia Lobanova, Yana Nikolaenko, Oleg Martynov, G. Zazulin","doi":"10.4236/jbbs.2020.1012037","DOIUrl":null,"url":null,"abstract":"The hypothesis of behavioral parameters dependence measured from person’s head movements in quasi-stationary state on COVID-19 disease is discussed. Method for determining the dependence of vestibular-emotional reflex parameters on COVID-19, various diseases and pathologies are proposed. Micro-movements of a head for representatives of the control group (with a confirmed absence of COVID-19 disease) and a group of patients with a confirmed diagnosis of COVID-19 were studied using vibraimage technology. Parameters and criteria for the diagnosis of COVID-19 for training artificial intelligence (AI) on the control group and the patient group are proposed. 3-layer (one hidden layer) feedforward neural network (40 + 20 + 1 sigmoid neurons) was developed for AI training. AI was firstly trained on the primary sample of patients and a control group. Study of a random sample of people with trained AI was carried out and the possibility of detecting COVID-19 using the proposed method was proved a week before the onset of clinical symptoms of the disease. Number of COVID-19 diagnostic parameters was increased to 26 and AI was trained on a sample of 536 measurements, 268 patient measurement results and 268 measurement results in the control group. The achieved diagnostic accuracy was more than 99%, 4 errors per 536 measurements (2 false positive and 2 false negative), specificity 99.25% and sensitivity 99.25%. The issues of improving the accuracy and reliability of the proposed method for diagnosing COVID-19 are discussed. Further ways to improve the characteristics and applicability of the proposed method of diagnosis and self-diagnosis of COVID-19 are outlined.","PeriodicalId":69804,"journal":{"name":"行为与脑科学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"行为与脑科学期刊(英文)","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4236/jbbs.2020.1012037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The hypothesis of behavioral parameters dependence measured from person’s head movements in quasi-stationary state on COVID-19 disease is discussed. Method for determining the dependence of vestibular-emotional reflex parameters on COVID-19, various diseases and pathologies are proposed. Micro-movements of a head for representatives of the control group (with a confirmed absence of COVID-19 disease) and a group of patients with a confirmed diagnosis of COVID-19 were studied using vibraimage technology. Parameters and criteria for the diagnosis of COVID-19 for training artificial intelligence (AI) on the control group and the patient group are proposed. 3-layer (one hidden layer) feedforward neural network (40 + 20 + 1 sigmoid neurons) was developed for AI training. AI was firstly trained on the primary sample of patients and a control group. Study of a random sample of people with trained AI was carried out and the possibility of detecting COVID-19 using the proposed method was proved a week before the onset of clinical symptoms of the disease. Number of COVID-19 diagnostic parameters was increased to 26 and AI was trained on a sample of 536 measurements, 268 patient measurement results and 268 measurement results in the control group. The achieved diagnostic accuracy was more than 99%, 4 errors per 536 measurements (2 false positive and 2 false negative), specificity 99.25% and sensitivity 99.25%. The issues of improving the accuracy and reliability of the proposed method for diagnosing COVID-19 are discussed. Further ways to improve the characteristics and applicability of the proposed method of diagnosis and self-diagnosis of COVID-19 are outlined.