A classification of left-invariant Lorentzian metrics on some nilpotent Lie groups

IF 0.4 4区 数学 Q4 MATHEMATICS
Yuji Kondo, H. Tamaru
{"title":"A classification of left-invariant Lorentzian metrics on some nilpotent Lie groups","authors":"Yuji Kondo, H. Tamaru","doi":"10.2748/tmj.20211122","DOIUrl":null,"url":null,"abstract":"It has been known that there exist exactly three left-invariant Lorentzian metrics up to scaling and automorphisms on the three dimensional Heisenberg group. In this paper, we classify left-invariant Lorentzian metrics on the direct product of three dimensional Heisenberg group and the Euclidean space of dimension $n-3$ with $n \\geq 4$, and prove that there exist exactly six such metrics on this Lie group up to scaling and automorphisms. Moreover we show that only one of them is flat, and the other five metrics are Ricci solitons but not Einstein. We also characterize this flat metric as the unique closed orbit, where the equivalence class of each left-invariant metric can be identified with an orbit of a certain group action on some symmetric space.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20211122","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

It has been known that there exist exactly three left-invariant Lorentzian metrics up to scaling and automorphisms on the three dimensional Heisenberg group. In this paper, we classify left-invariant Lorentzian metrics on the direct product of three dimensional Heisenberg group and the Euclidean space of dimension $n-3$ with $n \geq 4$, and prove that there exist exactly six such metrics on this Lie group up to scaling and automorphisms. Moreover we show that only one of them is flat, and the other five metrics are Ricci solitons but not Einstein. We also characterize this flat metric as the unique closed orbit, where the equivalence class of each left-invariant metric can be identified with an orbit of a certain group action on some symmetric space.
一些幂零李群上左不变洛伦兹度量的分类
已知在三维海森堡群上存在精确到标度的三个左不变洛伦兹度量和自同构。本文对三维Heisenberg群与具有$n\geq4$的维数为$n-3$的欧氏空间的直积上的左不变Lorentzian度量进行了分类,并证明了在这个Lie群上精确存在六个这样的度量,直到标度和自同构。此外,我们还证明了它们中只有一个是平坦的,其他五个度量是Ricci孤子,而不是Einstein。我们还将这个平坦度量刻画为唯一的闭合轨道,其中每个左不变度量的等价类可以用某个对称空间上的某个群作用的轨道来识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信