High-throughput virtual laboratory for drug discovery using massive datasets

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
J. Glaser, J. Vermaas, D. Rogers, J. Larkin, S. Legrand, Swen Boehm, Matthew B. Baker, A. Scheinberg, A. F. Tillack, M. Thavappiragasam, A. Sedova, Oscar R. Hernandez
{"title":"High-throughput virtual laboratory for drug discovery using massive datasets","authors":"J. Glaser, J. Vermaas, D. Rogers, J. Larkin, S. Legrand, Swen Boehm, Matthew B. Baker, A. Scheinberg, A. F. Tillack, M. Thavappiragasam, A. Sedova, Oscar R. Hernandez","doi":"10.1177/10943420211001565","DOIUrl":null,"url":null,"abstract":"Time-to-solution for structure-based screening of massive chemical databases for COVID-19 drug discovery has been decreased by an order of magnitude, and a virtual laboratory has been deployed at scale on up to 27,612 GPUs on the Summit supercomputer, allowing an average molecular docking of 19,028 compounds per second. Over one billion compounds were docked to two SARS-CoV-2 protein structures with full optimization of ligand position and 20 poses per docking, each in under 24 hours. GPU acceleration and high-throughput optimizations of the docking program produced 350× mean speedup over the CPU version (50× speedup per node). GPU acceleration of both feature calculation for machine-learning based scoring and distributed database queries reduced processing of the 2.4 TB output by orders of magnitude. The resulting 50× speedup for the full pipeline reduces an initial 43 day runtime to 21 hours per protein for providing high-scoring compounds to experimental collaborators for validation assays.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"35 1","pages":"452 - 468"},"PeriodicalIF":3.5000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10943420211001565","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211001565","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 26

Abstract

Time-to-solution for structure-based screening of massive chemical databases for COVID-19 drug discovery has been decreased by an order of magnitude, and a virtual laboratory has been deployed at scale on up to 27,612 GPUs on the Summit supercomputer, allowing an average molecular docking of 19,028 compounds per second. Over one billion compounds were docked to two SARS-CoV-2 protein structures with full optimization of ligand position and 20 poses per docking, each in under 24 hours. GPU acceleration and high-throughput optimizations of the docking program produced 350× mean speedup over the CPU version (50× speedup per node). GPU acceleration of both feature calculation for machine-learning based scoring and distributed database queries reduced processing of the 2.4 TB output by orders of magnitude. The resulting 50× speedup for the full pipeline reduces an initial 43 day runtime to 21 hours per protein for providing high-scoring compounds to experimental collaborators for validation assays.
使用海量数据集进行药物发现的高通量虚拟实验室
针对COVID-19药物发现的基于结构的大规模化学数据库筛选的解决时间缩短了一个数量级,并且在Summit超级计算机上的多达27,612个gpu上大规模部署了虚拟实验室,平均每秒可以对接19,028种化合物。超过10亿个化合物在24小时内与两个SARS-CoV-2蛋白结构对接,并对配体位置进行了充分优化,每次对接有20个姿势。对接程序的GPU加速和高吞吐量优化比CPU版本产生了350倍的平均加速(每个节点50倍的加速)。基于机器学习的评分和分布式数据库查询的特征计算的GPU加速减少了2.4 TB输出的处理数量级。由此产生的50倍加速将每个蛋白质的初始43天运行时间缩短到21小时,从而为实验合作者提供高评分化合物进行验证分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信