Identifying and quantifying variation between healthcare organisations and geographical regions: using mixed-effects models

G. Abel, M. Elliott
{"title":"Identifying and quantifying variation between healthcare organisations and geographical regions: using mixed-effects models","authors":"G. Abel, M. Elliott","doi":"10.1136/bmjqs-2018-009165","DOIUrl":null,"url":null,"abstract":"When the degree of variation between healthcare organisations or geographical regions is quantified, there is often a failure to account for the role of chance, which can lead to an overestimation of the true variation. Mixed-effects models account for the role of chance and estimate the true/underlying variation between organisations or regions. In this paper, we explore how a random intercept model can be applied to rate or proportion indicators and how to interpret the estimated variance parameter.","PeriodicalId":49653,"journal":{"name":"Quality & Safety in Health Care","volume":"28 1","pages":"1032 - 1038"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1136/bmjqs-2018-009165","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality & Safety in Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjqs-2018-009165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

When the degree of variation between healthcare organisations or geographical regions is quantified, there is often a failure to account for the role of chance, which can lead to an overestimation of the true variation. Mixed-effects models account for the role of chance and estimate the true/underlying variation between organisations or regions. In this paper, we explore how a random intercept model can be applied to rate or proportion indicators and how to interpret the estimated variance parameter.
识别和量化医疗保健组织和地理区域之间的差异:使用混合效应模型
当量化医疗保健组织或地理区域之间的差异程度时,往往没有考虑到机会的作用,这可能会导致对真实差异的高估。混合效应模型考虑了机会的作用,并估计了组织或地区之间的真实/潜在变化。在本文中,我们探讨了如何将随机截距模型应用于比率或比例指标,以及如何解释估计的方差参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quality & Safety in Health Care
Quality & Safety in Health Care 医学-卫生保健
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信